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Multiple Kernel Learning

Fast AlgorithmFast AlgorithmFast AlgorithmFast Algorithm
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Kernel Learning

Regression, Classification
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Kernel FunctionKernel Function



• Gaussian, polynomial, chi-square, $.

– Parameters：Gaussian width, polynomial degree

• Features

– Computer Vision：color, gradient, sift (sift, 

hsvsift, huesift, scaling of sift), Geometric Blur, 

image regions, ．．．

Thousands of kernelsThousands of kernels

image regions, ．．．
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Multiple Kernel Learning
(Lanckriet et al. 2004)

Multiple Kernel Learning
(Lanckriet et al. 2004)

Select important kernels and combine them



Multiple Kernel Learning (MKL)

Single Kernel

Multiple Kernel
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Multiple Kernel

dm:convex combination, 

sparse (many 0 components)



Lasso

Group Lasso

Multiple Kernel Learning (MKL)

grouping

kernelize

Sparse learning
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：N samples

：M kernels

：RKHS associated with km

：Convex loss（hinge, square, logistic）

L1-regularization

→sparsesparse



Representer theorem
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：Gram matrix of mth kernel

Finite dimensional problem



Proposed:

SpicyMKL

SpicyMKL
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• Scales well against # of kernels.

• Formulated in a general framework.



Outline

• Introduction

• Details of Multiple Kernel Learning 

• Our method 

– Proximal minimization

– Skipping inactive kernels

• Numerical Experiments

– Bench-mark datasets

– Sparse or dense
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Details of 
Multiple Kernel Learning(MKL)Multiple Kernel Learning(MKL)
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MKL

Generalized Formulation
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: sparse regularization



hinge loss elastic net
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logistic loss

L1regularization

elastic net:

L1regularization:

hinge:

logistic:



Rank 1 decomposition
If g is monotonically increasing and fℓ is diff’ble at the optimum, 

the solution of MKL is rank 1: 

such that
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convex combination of kernels

Proof Derivative w.r.t. 



Existing approach 1
Constraints based formulation:

[Lanckriet et al. 2004, JMLR] [Bach, Lanckriet & Jordan 2004, ICML]

Dual

primal
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Dual

• Lanckriet et al. 2004: SDP

• Bach, Lanckriet & Jordan 2004: SOCP



Existing approach 2
Upper bound based formulation:

[Sonnenburg et al. 2006, JMLR] [Rakotomamonjy et al. 2008, JMLR] 

[Chapelle & Rakotomamonjy 2008, NIPS workshop]

primal

(Jensen’s inequality)
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• Sonnenburg et al. 2006: Cutting plane (SILP)

• Rakotomamonjy et al. 2008: Gradient descent (SimpleMKL)

• Chapelle & Rakotomamonjy 2008: Newton method (HessianMKL)



Problem of existing methods

• Do not make use of sparsity

during the optimization.

→ Do not perform efficiently when 

# of kernels is large.
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# of kernels is large.



Outline

• Introduction

• Details of Multiple Kernel Learning 

• Our method 

– Proximal minimization

– Skipping inactive kernels

• Numerical Experiments

– Bench-mark datasets

– Sparse or dense
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Our method Our method 
SpicyMKL
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• DAL (Tomioka & Sugiyama 09)

– Dual Augmented Lagrangian

– Lasso, group Lasso, trace norm regularization

• SpicyMKL = DAL + MKL

– Kernelization of DAL
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Difficulty of MKL（Lasso）

is non-diff’ble at 0.

0
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0

Relax by 

Proximal MinimizationProximal Minimization
(Rockafellar, 1976)



Our algorithm
SpicyMKL: Proximal Minimization (Rockafellar, 1976)

Set some initial solution         . Choose increasing sequence                                .

Iterate the following update rule until convergence:

1

2

21

Regularization toward the last update.

Taking its dual, the update step can be solved efficiently

super linearly !super linearly !

•

•

It can be shown that



Fenchel’s duality theorem
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Split into two parts



dualdualdualdual

Non-diff’ble
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Non-diff’ble Smooth !

Moreau envelope



Inner optimization

• Newton method is applicable.

Twice Differentiable Twice Differentiable (a.e.)
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Twice Differentiable Twice Differentiable (a.e.)

Even if      is not differentiable,

we can apply almost the same algorithm. 



Rigorous Derivation of     

Convolution and duality 
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Moreau envelope

Moreau envelope (Moreau 65)
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Moreau envelope (Moreau 65)

For a convex function    ,  we define its Moreau envelope as 



Moreau envelope

L1-penalty
dual
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Smooth !Smooth !



We arrived at $

Dual of update rule in proximal minimization 

What we have observed
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• Differentiable

• Only active kernels need to be calculated. 

(next slide)



Soft threshold

Skipping inactive kernels
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Hard threshold

If                        (inactive),                                ,

and its gradient also vanishes. 



The objective function:

Its derivatives:

Derivatives
• We can apply Newton method for the dual optimization.
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where

• Only active kernels contributes their computations.

→ Efficient for large number of kernels. 



For any proper convex functions     and    , 

and any non-decreasing sequence     ,  

Convergence result

Thm.

If      is strongly convex and    is sparse reg., 

for any increasing sequence     ,

the convergence rate is super linearsuper linear.
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Thm.



• If loss     is non-differentiable, almost the same 

algorithm is available by utilizing Moreau 

envelope of     .

primal dual Moreau envelope of dual

Non-differentiable loss
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Dual of elastic net

primal dual

33

Smooth !Smooth !

Naïve optimization in the dual is applicable.

But we applied prox. minimization method

for small    to avoid numerical instability.



Why ‘Spicy’ ?

• SpicyMKL = DAL + MKL.

• DAL also means a major Indian cuisine.

→ hot, spicy

→ SpicyMKLSpicyMKL
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from Wikipedia

“Dal”



Outline

• Introduction

• Details of Multiple Kernel Learning 

• Our method 

– Proximal minimization

– Skipping inactive kernels

• Numerical Experiments

– Bench-mark datasets

– Sparse or dense
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Numerical ExperimentsNumerical Experiments
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CPU time against # of kernels

IDA data set, L1 regularization.
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SpicyMKL

• Scales well against # of kernels.

RingnormSplice



CPU time against # of samples

IDA data set, L1 regularization.
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SpicyMKL

• Scaling against # of samples is 

almost the same as the existing methods.

RingnormSplice



UCI dataset 
# of kernels 189 243 918 891 1647
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Comparison in elastic net

(Sparse v.s. Dense)
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where                     .

Sparse or Dense ?
Elastic NetElastic Net
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Sparse Dense

0 1

Compare performances of sparse and dense solutions

in a computer vision task.



caltech101 dataset (Fei-Fei et al., 2004)

• object recognition task

• anchor, ant, cannon, chair, cup

• 10 classification problems (10=5×(5-1)/2)    

• # of kernels: 1760 = 4 (features)×22 (regions) ×• # of kernels: 1760 = 4 (features)×22 (regions) ×
あああああ2 (kernel functions) × 10 (kernel parameters)

– sift features [Lowe99]: colorDescriptor [van de Sande et al.10]      

hsvsift, sift (scale = 4px, 8px, automatic scale)

– regions: whole region, 4 division, 16 division, spatial    

pyramid. (computed histogram of features on each region.)

– kernel functions: Gaussian kernels, kernels with 

10 parameters.
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Performance of sparse solution is 

comparable with dense solution.

Performances are averaged over all classification problems.

Best
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Medium density

dense



まとめと今後の課題

Conclusion

• We proposed a new MKL algorithm that is 

efficient when # of kernels is large.

– proximal minimization

– neglect ‘in-active’ kernels

Conclusion and Future works

– neglect ‘in-active’ kernels

• Medium density showed the best 

performance, but sparse solution also works 

well.

Future work

• Second order update 44



• Technical report 

T. Suzuki & R. Tomioka: SpicyMKL.

arXiv: http://arxiv.org/abs/0909.5026

• DAL• DAL

R. Tomioka & M. Sugiyama: Dual Augmented Lagrangian

Method for Efficient Sparse Reconstruction. IEEE Signal 

Proccesing Letters, 16 (12) pp. 1067--1070, 2009.
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Thank you for your attention!
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Moreau envelope

proximal operator

Some properties

(Fenchel duality th.)
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0

(Fenchel duality th.)

Differentiable !


