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Abstract

We give a generalization error bound as a modification of Lemma 10 in Schmidt-Hieber (2017)*1.

1 Settings and notations
Let us consider the following regression model. We observe i.i.d. random variables (Xi, Yi) generated by

Yi = f◦(Xi) + ξi, i = 1, 2, . . . , n. (1)

Here each ξi is a sampling noise independent of other variables. In this paper, we use the settings such
that

• each Xi is d-dimensional and uniformly distributed in [0, 1]d,
• each Yi is 1-dimensional,
• and ξi’s are i.i.d. centerd Gaussian with variance σ2 (σ > 0).

For simplicity, we sometimes use the notation Xn := (X1, . . . , Xn), Y n := (Y1, . . . , Yn) and Zn :=
(Xi, Yi)

n
i=1.

Definition 1.1. An estimator taking values in F ⊂ L2([0, 1]d) is a measurable (with respect to Borel
σ-algebra) map

(Rd × R)n → F , (Xi, Yi)
n
i=1 7→ f̂ .

Remark 1.2. In the following, we often write only f̂ where we should write (Xi, Yi)
n 7→ f̂ . For example,

inf(Xi,Yi)ni=1 7→f̂∈F is just denoted by inf f̂∈F . Also, in the case F = L2([0, 1]d), we omit F , such as inf f̂ .

To evaluate the quality of estimators, we have to adopt some indicator. For a fixed f◦ and a function
f ∈ L2([0, 1]d), we have

E[(f(Xi)− Yi)
2] = E[(f(Xi)− f◦(Xi))

2]− 2E[ξi(f(Xi)− f◦(Xi))] + E[ξ2i ]

= E[(f(Xi)− f◦(Xi))
2] + σ2

= ∥f − f◦∥2L2 + σ2.

It means that how small the expected error E[(f(Xi)−Yi)
2] is depends only on how small the L2 distance

∥f − f◦∥2L2 is. It leads to the following definition of an indicator.

Definition 1.3. The L2 risk for an estimator f̂ when is defined as

R(f̂ , f◦) := E
[
∥f̂ − f◦∥2L2

]
.

We evaluate the quality of an estimator f̂ by this L2 risk.

*1 In the latest version of the paper, the technical flaw has been already fixed.
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Remark 1.4. We omit n from notations because it is treated as a constant when we consider one
regression problem.

To evaluate the convergence rate of an estimator, some “complexity” measure of the model is required.
Here, we employ the ε-entropy for such a complexity measure.

Definition 1.5. (van der Vaart & Wellner 1996, Yang & Barron 1999) For a metric space (S, d) and
ε > 0, a finite set U ⊂ S is called ε-covering if for any x ∈ S there exists y ∈ U such that d(x, y) ≤ ε,
and the logarithm of the minimum cardinality of ε-covering is called covering ε-entropy and denoted by
V(S,d)(ε). Here, S is the completion of S with respect to the metric d.

2 Generalization bounds
The following theorem is useful for evaluating the convergence rate of the empirical risk minimizer.

Theorem 2.1. (Schmidt-Hieber 2017, Lemma 11) In the Gaussian regression model (1), let f̂ be the em-
pirical risk minimizer taking values in F ⊂ L2([0, 1]d). Suppose every element f ∈ F satisfies ∥f∥L∞ ≤ F
for some fixed F > 0. Then, for an arbitrary δ > 0, if V(F,∥·∥L∞ )(δ) ≥ 1, then

R(f̂ , f◦) ≤ 4 inf
f∈F

∥f − f◦∥2L2 + C

(
(F 2 + σ2)V(F,∥·∥L∞ )(δ)

n
+ (F + σ)δ

)
holds, where C > 0 is an absolute constant.

Proof. (mainly following the original proof *2) First, we evaluate the value of

D :=

∣∣∣∣∣E
[
1

n

n∑
i=1

(f̂(Xi)− f◦(Xi))
2

]
−R(f̂ , f◦)

∣∣∣∣∣ .
Let X ′

1, . . . , X
′
n be i.i.d. random variables generated to be independent from (Xi, Yi)

n
i=1. Then we have

R(f̂ , f◦) =
1

n

n∑
i=1

E
[
(f̂(X ′

i)− f◦(X ′
i))

2
]
,

so that we get

D =

∣∣∣∣∣E
[
1

n

n∑
i=1

(
(f̂(Xi)− f◦(Xi))

2 − (f̂(X ′
i)− f◦(X ′

i))
2
)]∣∣∣∣∣

≤ 1

n
E

[∣∣∣∣∣
n∑

i=1

(
(f̂(Xi)− f◦(Xi))

2 − (f̂(X ′
i)− f◦(X ′

i))
2
)∣∣∣∣∣
]
.

Here, let Gδ = {f1, . . . , fN} be a δ-covering of F with the minimum cardinality in L∞ metric. Notice
logN ≥ 1. If we define gj(x, x

′) := (fj(x)− f◦(x))2 − (fj(x
′)− f◦(x′))2 and a random variable J taking

values in {1, . . . , N} such that ∥f̂ − fJ∥L∞ ≤ δ, we have

D ≤ 1

n
E

[∣∣∣∣∣
n∑

i=1

gJ(Xi, X
′
i)

∣∣∣∣∣
]
+ 8Fδ. (2)

In the abouve evaluation, we have used the inequality∣∣∣(f̂(x)− f◦(x))2 − (fJ(x)− f◦(x))2
∣∣∣ = ∣∣∣f̂(x)− fJ(x)

∣∣∣ ∣∣∣f̂(x) + fJ(x)− 2f◦(x)
∣∣∣ ≤ 4Fδ.

*2 We noticed and fixed some technical flaws in the original proof.
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Define constants rj := max{A, ∥fj − f◦∥L2} (j = 1, . . . , N) and a random variable

T := max
1≤j≤N

∣∣∣∣∣
n∑

i=1

gj(Xi, X
′
i)

rj

∣∣∣∣∣ ,
where A > 0 is a deterministic quantity fixed afterward. Then we have, since (2)

D ≤ 1

n
E[rJT ] + 8Fδ ≤ 1

n

√
E[r2J ]E[T

2] + 8Fδ ≤ 1

2
E[r2J ] +

1

2n2
E[T 2] + 8Fδ (3)

by Cauchy-Schwarz inequality and AM-GM inequality. Here, by the definition of J , E[r2J ] can be evalu-
ated as follows:

E[r2J ] ≤ A2 + E
[
∥fJ − f◦∥2L2

]
≤ A2 + E

[
∥f̂ − f◦∥2L2

]
+ 4Fδ

= R(f̂ , f◦) +A2 + 4Fδ. (4)

Because of the independence of defined random variables,

E

( n∑
i=1

gj(Xi, X
′
i)

rj

)2
 =

n∑
i=1

E

[(
gj(Xi, X

′
i)

rj

)2
]

=

n∑
i=1

(
E

[
(fj(Xi)− f◦(Xi))

4

r2j

]
+ E

[
(fj(X

′
i)− f◦(X ′

i))
4

r2j

])
≤ 2F 2n

holds, where we have used the fact that each gj(Xi, X
′
i) is centered. Then, using Bernstein’s inequality

(Theorem ??), we have, in terms of r := min1≤j≤N rj ,

P(T 2 ≥ t) = P(T ≥
√
t) ≤ 2N exp

− t

2F 2
(
2n+

√
t

3r

)
 , t ≥ 0.

Let us evaluate E[T 2]. For arbitrary t0 > 0, it holds that

E[T 2] =

∫ ∞

0

P (T 2 ≥ t) dt ≤ t0 +

∫ ∞

t0

P (T 2 ≥ t) dt

≤ t0 + 2N

∫ ∞

t0

exp

(
− t

8F 2n

)
dt+ 2N

∫ ∞

t0

exp

(
−3r

√
t

4F 2

)
dt.

We compute these two integration values in terms of t0 :∫ ∞

t0

exp

(
− t

8F 2n

)
dt =

[
−8F 2n exp

(
− t

8F 2n

)]∞
t0

= 8F 2n exp

(
− t0
8F 2n

)
,∫ ∞

t0

exp

(
−3r

√
t

4F 2

)
dt =

∫ ∞

t0

exp(−a
√
t) dt (a := 3r/4F 2)

=

[
−2(a

√
t+ 1)

a2
exp(−a

√
t)

]∞
t0

=
8F 2

√
t0

3r
exp

(
−3r

√
t0

4F 2

)
+

32F 2

9r2
exp

(
−3r

√
t0

4F 2

)
.
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Now we determine A =
√
t0/6n. Since we have r ≥ A =

√
t0/6n,

E[T 2] ≤ t0 + 2N

(
8F 2n+ 16F 2n+

128F 2n2

t0

)
exp

(
− t0
8F 2n

)
≤ t0 + 16NF 2n

(
3 +

16n

t0

)
exp

(
− t0
8F 2n

)
holds. Let t0 = 8F 2n logN , then the above evaluation is rewritten as

E[T 2] ≤ 8F 2n

(
logN + 6 +

2

F 2 logN

)
. (5)

Finally, we combine (3), (4), (5) and A2 =
2F 2 logN

9n
to get

D ≤
(
1

2
R(f̂ , f◦) +

1

2
A2 + 2Fδ

)
+

4F 2

n

(
logN + 6 +

2

F 2 logN

)
+ 8Fδ

≤ 1

2
R(f̂ , f◦) +

F 2

n

(
37

9
logN + 32

)
+ 10Fδ,

where we have used the fact that logN ≥ 1. So we get an evaluation

R(f̂ , f◦) ≤ 2E

[
1

n

n∑
i=1

(f̂(Xi)− f◦(Xi))
2

]
+

2F 2

n

(
37

9
logN + 32

)
+ 20Fδ. (6)

Next we evaluate the quantity

R̂ := E

[
1

n

n∑
i=1

(f̂(Xi)− f◦(Xi))
2

]
. (7)

Since f̂ is an empirical risk minimizer, for arbitrary f ∈ F ,

E

[
1

n

n∑
i=1

(f̂(Xi)− Yi)
2

]
≤ E

[
1

n

n∑
i=1

(f(Xi)− Yi)
2

]

holds. As Yi = f◦(Xi) + ξi, we have

E
[
(f(Xi)− Yi)

2
]
− E

[
(f̂(Xi)− Yi)

2
]

= E
[
(f(Xi)− f◦(Xi))

2
]
− 2E [ξif(Xi)]− E

[
(f̂(Xi)− f◦(Xi))

2
]
+ 2E

[
ξif̂(Xi)

]
=
(
∥f − f◦∥2L2 + 2E

[
ξif̂(Xi)

])
− E

[
(f̂(Xi)− f◦(Xi))

2
]
.

Here we have used the fact that

E[ξif(Xi)] = E[ξi]E[f(Xi)] = 0

holds because of the independence between ξi and Xi, and the fact that both ξi and f(Xi) have a finite
L1 norm. So we have

R̂ ≤ ∥f − f◦∥2L2 + E

[
2

n

n∑
i=1

ξif̂(Xi)

]
. (8)
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Let us evaluate the second term in RHS.∣∣∣∣∣E
[
2

n

n∑
i=1

ξif̂(Xi)

]∣∣∣∣∣ =
∣∣∣∣∣E
[
2

n

n∑
i=1

ξi(f̂(Xi)− f◦(Xi))

]∣∣∣∣∣
≤ 2δ

n
E

[
n∑

i=1

|ξi|

]
+

∣∣∣∣∣E
[
2

n

n∑
i=1

ξi(fJ(Xi)− f◦(Xi))

]∣∣∣∣∣ . (9)

Here, the first term is upper bounded by using Cauchy-Schwarz inequality:

2δ

n
E

[
n∑

i=1

|ξi|

]
≤ 2δ

n
E

n1/2

(
n∑

i=1

ξ2i

)1/2
 ≤ 2δ√

n
E

[
n∑

i=1

ξ2i

]1/2
= 2σδ. (10)

Let εj (j = 1, . . . , N) be random variables defined as

εj :=

∑n
i=1 ξi(fj(Xi)− f◦(Xi))(∑n

i=1(fj(Xi)− f◦(Xi))2
)1/2 ,

where εj := 0 if the denominator equals to 0. Notice each εj follows a centered Gaussian with variance σ2

(conditionally on X1, . . . , Xn). Now we have, using Cauchy-Schwarz inequality and AM-GM inequality,∣∣∣∣∣E
[
2

n

n∑
i=1

ξi(fJ(Xi)− f◦(Xi))

]∣∣∣∣∣ = 2

n

∣∣∣∣∣∣E
( n∑

i=1

(fJ(Xi)− f◦(Xi))
2

)1/2

εJ

∣∣∣∣∣∣
≤ 2√

n
E

[
1

n

n∑
i=1

(fJ(Xi)− f◦(Xi))
2

]1/2
E

[
max

1≤j≤N
ε2j

]1/2
≤ 2√

n

√
R̂+ 4Fδ E

[
max

1≤j≤N
ε2j

]1/2
≤ 1

2
(R̂+ 4Fδ) +

2

n
E

[
max

1≤j≤N
ε2j

]
. (11)

By a similar argument as in the proof of Lafferty, Liu & Wasserman (2008, Theorem 7.47), for any
0 < t < 1/2σ2,

exp

(
tE

[
max

1≤j≤N
ε2j

])
≤ E

[
max

1≤j≤N
exp

(
tε2j
)]

(by Jensen’s inequality)

≤ NE
[
exp

(
tε21
)]

=
N√
2πσ2

∫ ∞

−∞
etx

2

e−
x2

2σ2 dx =
N√

1− 2σ2t

holds. So we have, by determining t = 1/4σ2,

E

[
max

1≤j≤N
ε2j

]
≤ 4σ2 log(

√
2N) ≤ 4σ2(logN + 1) (12)

Now we combine (8)–(12) to get

R̂ ≤ ∥f − f◦∥2L2 + 2σδ +
1

2
(R̂+ 4Fδ) +

8σ2

n
(logN + 1),

so that

R̂ ≤ 2∥f − f◦∥2L2 + 4(σ + F )δ +
16σ2

n
(logN + 1) (13)
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holds.
Finally, since f is an arbitrary element of F , we combine (6), (7) and (13) to have

R(f̂ , f◦) ≤ 4 inf
f∈F

∥f − f◦∥2L2 +
1

n

((
37

9
F 2 + 32σ2

)
logN + 32(F 2 + σ2)

)
+ (18F + 8σ)δ,

and this leads to the conclusion.
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