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Abstract
We give a generalization error bound as a modification of Lemma 10 in Schmidt-Hieber (2017)*!.

1 Settings and notations

Let us consider the following regression model. We observe i.i.d. random variables (X;,Y;) generated by
Y;:fO(Xz)—ng, 221,2,,’[7, (1)

Here each &; is a sampling noise independent of other variables. In this paper, we use the settings such

that

e cach X, is d-dimensional and uniformly distributed in [0, 1]¢,
e cach Y; is 1-dimensional,
e and ¢;’s are i.i.d. centerd Gaussian with variance o2 (o > 0).

For simplicity, we sometimes use the notation X" := (Xi,...,X,), Y" = (Y¥1,...,Y,,) and Z" =

Definition 1.1. An estimator taking values in F C L2([0,1]%) is a measurable (with respect to Borel
o-algebra) map
RYxR)" = F, (X3, Y, = f.

Remark 1.2. In the following, we often write only fwhere we should write (X, Y;)™ — f For example,
inf(Xi,Yi);L:lee}. is just denoted by inffe}.. Also, in the case F = L2([0,1]%), we omit F, such as inff.

To evaluate the quality of estimators, we have to adopt some indicator. For a fixed f° and a function
f € L*(]0,1]%), we have
E[(f(X;) = Yi)?’] = E[(f(X;) — f°(X4))?] = 2E[&(f(Xs) — f°(Xy))] + E[E]]
= E[(f(X:) — [°(X:)*] + o
= [If = fl7: + 0>

It means that how small the expected error E[(f(X;)—Y;)?] is depends only on how small the L? distance
lf — f°||2. is. It leads to the following definition of an indicator.

Definition 1.3. The L? risk for an estimator fwhen is defined as

~

R(F, 1) =B [If - £l

We evaluate the quality of an estimator fby this L? risk.

*1 In the latest version of the paper, the technical flaw has been already fixed.



Remark 1.4. We omit n from notations because it is treated as a constant when we consider one
regression problem.

To evaluate the convergence rate of an estimator, some “complexity” measure of the model is required.
Here, we employ the e-entropy for such a complexity measure.

Definition 1.5. (van der Vaart & Wellner 1996, Yang & Barron 1999) For a metric space (5, d) and
£ > 0, a finite set U C S is called e-covering if for any = € S there exists y € U such that d(x,y) < e,
and the logarithm of the minimum cardinality of e-covering is called covering e-entropy and denoted by
Vis,a)(€). Here, S is the completion of S with respect to the metric d.

2 Generalization bounds
The following theorem is useful for evaluating the convergence rate of the empirical risk minimizer.

Theorem 2.1. (Schmidt-Hieber 2017, Lemma 11) In the Gaussian regression model (1), let f be the em-
pirical risk minimizer taking values in F C L*([0,1]%). Suppose every element f € F satisfies || f||p < F
for some fived F' > 0. Then, for an arbitrary 6 > 0, if V(z |.|,~)(0) > 1, then

Loo)

(F2 + 0 )ViF |l o) (0)
n

RS <Ll - 1o + P +0))

holds, where C' > 0 is an absolute constant.

Proof. (mainly following the original proof *2) First, we evaluate the value of

Let X{,..., X/ beiid. random variables generated to be independent from (X;,Y;)? ;. Then we have

so that we get

p-|E iz(<f<xz>—f°<xi>>2—<f<x;>—f°<xz>>2)H
< B {30 (PO - 12002 = (FX) = £ ]

Here, let G5 = {f1,..., fn} be a d-covering of F with the minimum cardinality in L* metric. Notice
log N > 1. If we define g;(x,2') := (f;(z) — f°(z))* — (f;(z’) — f°(2"))? and a random variable J taking
values in {1,..., N} such that ||f — fs||L~ < 4, we have

1 n
p< B [ > 000X XD | + 855 (2)

In the abouve evaluation, we have used the inequality

~ ’ o~

(F@) = £2(@)7 = (fae) = 2@)?| = | F@) = 15@)| [F@) + fa(2) - 20°(@)| < 4P,

*2 We noticed and fixed some technical flaws in the original proof.



Define constants r; := max{A4, || f; — f°|lz2} (j =1,...,N) and a random variable

)

n
(X, X!
T := max E 7%( i» Xi)
1<j<N P T

where A > 0 is a deterministic quantity fixed afterward. Then we have, since (2)

1 1 1 1
D < ﬁE[rJT] +8F§ < - E[r2]E[T?] + 8F§ < 5E[ﬁ] + ﬁE[TQ} +8F§ (3)

by Cauchy-Schwarz inequality and AM-GM inequality. Here, by the definition of J, E[r%] can be evalu-
ated as follows:

B3] < A2+ E[|fs - f°l7:] < A*+E [||f— f0||ig] +4F§
= R(f,[°) + A® + 4F. (4)

Because of the independence of defined random variables,

. (Z gj<X17Xg>>2 _Tw l(gxxgxnﬂ

holds, where we have used the fact that each g;(X;, X;) is centered. Then, using Bernstein’s inequality
(Theorem ?7?), we have, in terms of r := mini<;<n 75,

t

P(T?>t)=P(T'>Vt) <2Nexp | -——————
252 (20 + ¥

. t>0.

Let us evaluate E[T?]. For arbitrary to > 0, it holds that

E[T?] :/O P(T? > t)dt < tg +/ P(T? > t)dt
to

o0 t o 3ry/t
<ty+2N —— | dt +2N - dt.
Sto+ . exp ( 8F2n) + . exp ( 12 >

We compute these two integration values in terms of ¢ :

o0 t t o to
- dt = |-8F? - = 8F? -
[, o (-amm) = [srnew (57|, =s7new (-5,

/OO op <_?:1Fﬁ> a= | " exp(-avi)d (a = 3r/4F?)

to

oo

_ [_Q(a at2+ 1) exp(—a\/i)}
_ 8F;;/% exp < 3r\/z$> +t§2F2 exp < 3r¢t}) '

4F? 9r2 4F?



Now we determine A = /#5/6n. Since we have r > A = /1y /6n,

128 F?n? t
2 2 2 0
E[T7] <tp+2N <8F n+ 16F“n + T >exp <8 Qn)

16n t()
<to+16NF?n |3+ — -
<ty + n( + t0>eXp< 8F2n>

holds. Let tg = 8F%?nlog N, then the above evaluation is rewritten as

2 < 2 )
E[T?] < 8F n<logN+6+F210gN> (5)

2F2%log N ¢

Finally, we combine (3), (4), (5) and A% = o get

1~ o0 1 5 4F? 2
5R(f,f )+§A +2F5>+n<logN+6+F2

D _c
log N

)+t

—~ F?
R(f, £%) + - <39710gN+32> + 10F,

IN

IN
Y

where we have used the fact that log N > 1. So we get an evaluation

R(f,f°) < 2B l; D () = fo(X0))? | + = =

2F?
4 (?:97 log N + 32) +20Fs. (6)

Next we evaluate the quantity

Since f is an empirical risk minimizer, for arbitrary f € F,

n

1 ~

- Z(f(Xi) - Y;)?

<

13

<E li > () - V2

=1

E

holds. AsY; = f°(X;) + &, we have
B[(/(X) - Yi)?] = B[ (F(x:) - ¥0)?]
= B[(/(X:) ~ [°(X0))?] = 2B[&:/ (X0)] — B [(J(X2) = /°(X0))?] + 2B [ F(x0)]
= (IF = 12132 + 2B [&:7(X0)] ) — B[ (Fx0) - 1o(x0))?].

Here we have used the fact that

E[§i f(Xi)] = E[GIE[f(X3)] =0

holds because of the independence between &; and X;, and the fact that both & and f(X;) have a finite
L' norm. So we have

R<|f-fll7:+E

2_2@-?0@-)1 . ®



Let us evaluate the second term in RHS.

25 e x| = [B |2 S - )

n Pt 3 K3 n — X3 1 3

26 n 2 n .

—E Z (31 - Zfi(fJ(Xi) — X)) (9)
i=1 i=1

Here, the first term is upper bounded by using Cauchy-Schwarz inequality:
n n 1/2 1/2

20 20 1/2 5

ZE|D Gl < =E Y6 < —E Zf = 200. (10)

n

i=1 i=1

Lete; (j =1,...,N) be random variables defined as

2 &S5 (X5) — f2(Xi))

1/2°

IN

(S (X — (X))

where €; := 0 if the denominator equals to 0. Notice each €; follows a centered Gaussian with variance o
(conditionally on Xi,...,X,). Now we have, using Cauchy-Schwarz inequality and AM-GM inequality,

j :

2

E

Sl

. 1/2
E (Z(fﬂxn—f‘)(xz»)f) €

i=1

%Zfi(ﬁl(xi) - fO(Xi))] ’ =

i=1

9 L 1/2 1/2
< = - \ _ fo )2 2
< P[5 X - FO0R| B o

9 1/2
< 2
< \F R+4F5 E { mJa<XN€]}

~ 2

< - = HE
< 2(R—|—4F5) + nE Lglja<Xst} (11)

By a similar argument as in the proof of Lafferty, Liu & Wasserman (2008, Theorem 7.47), for any
0<t<1/202,

< 2 s s .
exp (tE L<mJa<XN8 }) E [ SmjaSXN exp (taj)] (by Jensen’s inequality)
< NE [eXp (te%)]
N /Oo 2 2 N
= e’ e 22 dr = ———
V2oro? J_x V1 —20%t
holds. So we have, by determining t = 1/402,
E [ max € } < 40%log(V2N) < 402(log N 4 1) (12)
1<j<N

Now we combine (8)—(12) to get

802
<|If = £ol13: + 206 + = (R+4F6)+f(logN+ 1),

so that

~ 16 2
R<2lf — fo)22 +4(0 + F)s + —2

(log N +1) (13)



holds.
Finally, since f is an arbitrary element of F, we combine (6), (7) and (13) to have

N 1//37
Y<4inf [[f— fol?. + = [ | =F?+ 3202 | log N + 32(F? + o2
R <1 - o1+ o (043200 oV 4 3 4 o)
+ (18F + 80)0,
and this leads to the conclusion. O
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