
Frequency-aware Truncated Methods
for Sparse Online Learning

Hidekazu Oiwa, Shin Matsushima, and Hiroshi Nakagawa

The University of Tokyo,
7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan

{oiwa,masin}@r.dl.itc.u-tokyo.ac.jp
n3@dl.itc.u-tokyo.ac.jp

Abstract. Online supervised learning with L1-regularization has gained
attention recently because it generally requires less computational time
and a smaller space of complexity than batch-type learning methods.
However, a simple L1-regularization method used in an online setting
has the side effect that rare features tend to be truncated more than
necessary. In fact, feature frequency is highly skewed in many applica-
tions. We developed a new family of L1-regularization methods based
on the previous updates for loss minimization in linear online learning
settings. Our methods can identify and retain low-frequency occurrence
but informative features at the same computational cost and convergence
rate as previous works. Moreover, we combined our methods with a cu-
mulative penalty model to derive more robust models over noisy data.
We applied our methods to several datasets and empirically evaluated
the performance of our algorithms. Experimental results showed that our
frequency-aware truncated models improved the prediction accuracy.

Keywords: Online Learning, L1-regularization, Sparse Learning, Con-
vex Programming, Low-frequency Occurrence Features, Natural Lan-
guage Processing

1 Introduction

Online learning is a training method using a sequence of instances, and it exe-
cutes a learning process on one piece of data at each round. When learning from
a large quantity of data, many well-known batch-type algorithms cannot solve
an optimization problem within a reasonable time because the computational
cost is very high. In addition, all instances may not be loaded into the main
memory simultaneously. An online learning framework calculates what compo-
nents of the weight vector are to be updated and by how much, based on only
one instance, resulting in use of much less memory space. In this aspect, on-
line learning is competitive for training from large-scale datasets in which the
instances are high dimensional or the number of instances is very large. Online
learning has recently attracted much attention owing to these properties, and
many algorithms have been transformed into online ones.

2 H. Oiwa, S. Matsushima, H. Nakagawa.

L1-regularization, Lasso, is regarded as a useful technique for large-scale data
analysis. Normal L1-regularization introduces the L1 norm into optimization
problems to penalize the weight vector. By applying L1-regularization in algo-
rithms, we can generate compact models to eliminate the features that do not
contribute to the prediction. Compact models are also able to reduce the com-
putational time and memory space used.

Carpenter[3] proposed an approach that combines online learning with L1-
regularization while maintaining the advantages of both techniques. Duchi et
al.[7] and Langford et al.[9] generalized online learning with regularization and
proved the regret bound. These methods consist of two steps. In the first step,
the weight vector is updated to improve precision by reducing the value of the
loss function using the received instance. Then, in the second step, regularization
is applied to the weight vector. This learning scheme is the most famous in the
field of sparse online learning. Therefore, many algorithms associated with the
two-step scheme have been developed and analyzed, e.g., the lazy-update and
cumulative-update forms. Thus, we focus on two-step scheme in this paper.

The widely known form of two-step algorithms is a subgradient method with
L1-regularization. This framework updates the weight vector in a loss minimiza-
tion step according to the subgradient method, and then it truncates parameters
using a normal L1-regularized term. In this paper, we call this method SubGra-
dient method with L1-regularization (SG-L1). Although SG-L1 is an effective
learning framework, this algorithm does not take into account feature frequency
information. As a result, a set of rarely occurring features tends to be truncated
to zero even if they are important or critical features. In many applications, such
as natural language processing and pattern recognition tasks, the frequency of
feature occurrence is not usually uniform. If there are value range differences
among features, the truncated problem also occurs. However, these properties
were not studied in detail in previous works.

Parts of infrequently occurring features are often informative for prediction.
To capture these parts, pre-emphasizing methods have been developed, such as
TF-IDF[14]. Another pre-processing method is to normalize the value range of
each feature to standardize each feature. However, in an online learning setting,
it is difficult to use these pre-processing methods while preserving the essence of
online learning, i.e., to process samples sequentially.

In this paper, we propose simple truncated methods for retaining rarely oc-
curring but informative features in an online setting. The key idea is to integrate
the updating values in the loss minimization step into the L1-regularization step.
We call these methods frequency-aware truncated methods. In this way, we can
decrease the truncation effects of rare features in an online setting. We also ana-
lyzed theoretical guarantees of our methods and derived the same computational
cost and regret bound as for the SG-L1 method. Furthermore, we investigated
frequency-aware truncated methods with a cumulative penalty[15] to achieve ro-
bust solutions for noisy instances. We evaluated the effectiveness of our methods
in experiments comparing our approach to other sparse online algorithms.

Frequency-aware Truncated Methods for Sparse Online Learning 3

Table 1. Notation

a scalar |λ| absolute value

a vector a(i) i-th entry of vector a

A matrix A(i,j) (i,j)-th entry of matrix A
∥a∥p Lp norm ⟨a,b⟩ inner product

The outline of this paper is as follows. First, we introduce the problem set-
ting and related works of sparse online learning in section 2. Next, we point out
the disadvantages of previous works, namely, that low-frequency features are
readily truncated, and propose frequency-aware truncated methods for solving
rare-frequency feature truncated problems in section 3. Moreover, we analyze
some properties of our methods and give theoretical guarantees. In section 4, we
derive additional algorithms for combining our proposed methods with cumula-
tive penalty models. In section 5, we evaluate the performance of our methods
using classification tasks. From the experimental results, we discuss the proper-
ties of frequency-aware truncation and our contribution. We conclude the paper
in section 6.

2 Linear Sparse Online Supervised Learning

2.1 Problem Setting

First, we introduce our notation to formally describe the problem setting. In
this paper, scalars are lower-case italic letters, e.g., λ, and an absolute value of
each scalar is |λ|. Vectors are lower-case bold letters, such as x. Matrices are
upper-case bold letters, e.g., X. ∥x∥p represents Lp norm of vector x, and ⟨x,y⟩
denotes an inner product of two vectors x,y. Table 1 summarizes the notation
in this paper.

In this work, we develop a new family of truncated strategies for linear online
learning. In the setting of standard linear sparse online learning, algorithms
perform a sequential prediction and updating scheme. The objective is to derive
the optimal weight vector w ∈ W ⊂ Rd, where W is a closed convex set. The
updating process is conducted as follows.

1. Receive input data xt ∈ X ⊂ Rd. Input data xt is a feature vector taken
from a d-dimensional closed convex set X.

2. Make a prediction based on an inner product of feature vector xt and a
weight vector wt. The predicted value is ŷt = ⟨wt,xt⟩.

3. Observe a true output yt.

4. Update weight vector wt to wt+1/2 using a loss function ℓt(·).
5. Update wt+1/2 to wt+1 using an L1-regularized term rt(·).
6. Iterate steps 1 through 5 until no input data remains.

4 H. Oiwa, S. Matsushima, H. Nakagawa.

We update a weight vector according to loss function ℓt at step 4 and regu-
larization term rt at step 5. ℓt is a loss function of the form1

ℓt(wt) : W → R+ ,

where ℓt is convex with respect to weight vector wt. In this paper, we deal with
linear online learning framework. Thus, we consider a loss function that exists a
function ℓ̂t, where

ℓt(w) = ℓ̂t(⟨w,xt⟩) = ℓ̂t(ŷt) , (1)

and loss function ℓ̂t is generally non-decreasing for the difference between ŷt
and yt. We call a loss function that satisfies the restriction above a linear online
learning problem.

In the setting of a standard linear online learning problem, a subgradient
method(SG)[1][17] is often used for learning. In subgradient methods, the weight
vector is updated as stated in formula (2):

wt+1/2 = wt − ηtg
f
t s.t. gf

t ∈ ∂ft(wt) , (2)

where gf
t is a subgradient2 of ft with respect to wt and ηt is a learning rate.

∂f(wt) is a set of all subgradients of ft at wt. A subgradient method updates
parameters sequentially to minimize ft. It has been proved that the regret bound
of the subgradient method is O(

√
T) when ηt = 1/

√
t, and consequently the

regret bound per data vanishes as T → ∞.
rt is a regularized term of the form

rt(wt+1/2) : W → R+ ,

where rt is convex in wt+1/2. Many algorithms use L1 norm to penalize the
weight vector in a sparsity-induced regularization.

rt(w) = r(w) = λ∥w∥1 , (3)

where λ is a regularization parameter.
In SG-L1, we penalize the weight vector according to formula (4) at step 5.

wt+1 = arg min
w

{
∥w −wt+1/2∥22/2 + ληt+1/2∥w∥1

}
, (4)

where ηt+1/2 is the second learning rate. In this step, we find a weight vector
that is in between the previous weight wt+1/2 and a truncated one.

In this paper, we focus on step 5, the regularization step, and propose a new
family of L1-regularization methods.

1 Squared loss function ℓt(wt) = (yt − ⟨wt,xt⟩)2 and Hinge loss function ℓt(wt) =
[1− yt⟨wt,xt⟩]+ are usually used for ℓt.

2 A subgradient of f at x is the vector g ∈ Rn that satisfies

∀y f(y) ≥ f(x) + ⟨g,y − x⟩ .

Even if f is non-differentiable, at least one subgradient exists when f is convex.

Frequency-aware Truncated Methods for Sparse Online Learning 5

2.2 Related Works

As previously mentioned, SG-L1 is the most common method in sparse online
learning frameworks. Carpenter[3] split the update procedure into two steps
and proposed a method to obtain a sparse solution in an online setting. In
addition, FOBOS[7] and truncated gradient methods[9] generalized a splitting
form method and analyzed the optimal step size and the regret bound of sparse
online learning. These algorithms are guaranteed to asymptotically offer regret
O(

√
T) in the restriction of the loss function and regularized term in section 2.1.

Furthermore, Nesterov[12] proposed the dual averaging method for online
learning. This method updates the weight vector to solve the simple optimiza-
tion problem that includes the average of all previous subgradients of the loss
functions at each iteration. Xiao[16] developed the extension of the dual averag-
ing method to include a regularization term, such as L1 norm. The regularized
dual averaging form (RDA) solves the minimization problem that takes into
account both a regularized term and the average of all previous subgradients.
A family of dual averaging methods ensures the O(

√
T) regret bound, but, this

scheme also has the low-occurrence feature truncation problem because it applies
the same penalty to all features. Duchi et al.[6] proposed a new family of subgra-
dient methods as an alternative to previously used subgradient methods, named
AdaGrad. AdaGrad incorporates the knowledge of the data observed in earlier
iterations to emphasize the infrequently occurring instance in an online setting.
However, when a feature occurs for the first time, AdaGrad cannot standardize
it. This is because AdaGrad adjusts the update in a loss minimization step. In
addition, AdaGrad also has the value range problem explained in section 3.

Useful methods have been proposed in the field of online learning for clas-
sification. For example, Perceptron[13], Passive-Aggressive[4], and Confidence-
Weighted[5] algorithms are often used as alternatives to subgradient methods. In
particular, Confidence-Weighted algorithms introduce a Gaussian distribution
into a weight vector and update parameters using the covariance parameters
of the weight vector in order to emphasize informative low-frequency features.
However, Confidence-Weighted algorithms do not generate a sparse solution.

3 Frequency-aware Truncated Methods

As noted in section 1, SG-L1 and other sparse online algorithms apply the same
penalty to all features independent of the previous update of each feature. In the
linear online learning framework, algorithms update the weight of the feature
that occurs in a piece of input data. As a result, the set of rarely occurring
features tends to be sparse because the value range of these parameters must be
larger than that of other features that are not truncated.

For example, we apply SG-L1 to the dataset in which feature A’s occurrence
rate is 1/2 and feature B’s rate is 1/100. In this case, feature B inevitably

6 H. Oiwa, S. Matsushima, H. Nakagawa.

becomes 0 unless feature B’s update satisfies

ηt|gℓ,(B)
t | ≥ λ

t+100∑
s=t

ηs+1/2 .

In this paper, g(i) represents the i-th entry of the vector g. On another front,
the weight of feature A does not always drop to 0, where

ηt|gℓ,(A)
t | ≥ λ

t+1∑
s=t

ηs+1/2 .

Therefore, in a normal sparse online learning framework, if the feature occurrence
rate is non-uniform, we may fail to retain rarely occurring but important features.
In many tasks, such as NLP and pattern recognition, a feature’s occurrence rate
is usually non-uniform.

In addition, each feature’s value range affects the truncation of parameters.
Assume that there are two features: one is an arbitrary feature and the other is
one whose value is 1000 times larger than the first feature. If we learn from this
dataset using normal sparse online learning, which applies the same penalty to
all features, the weight of the first feature is truncated faster than that of the
second feature, despite them both having almost the same effect for classification
and prediction.

We designed a family of frequency-aware truncated methods to capture low-
frequency features and solve the value range problem in an online setting. A
frequency-aware truncated method redefines step 5 in a sparse online learning
alternative to normal L1 norm by using each feature’s previous update.

Let ut be the t-th update at step 43. In this case, we can write step 4 as

wt+1/2 = wt + ut .

Then, the frequency-aware truncated method defines step 5 as follows:

wt+1 = arg min
w

{
∥w −wt+1/2∥22/2 + ληt+1/2∥Ht,pw∥1

}
, (5)

where

Ht,p =

h
(1)
t,p 0 . . . 0

0 h
(2)
t,p . . . 0

...
...

. . .
...

0 0 . . . h
(d)
t,p

 s.t. h
(j)
t,p = p

√√√√ t∑
s=1

∣∣∣u(j)
s

∣∣∣p .

h
(j)
t,p is the Lp norm of a vector that consists of feature j’s update at step 4 in

each iteration. Ht,p is a matrix consisting of h
(j)
t,p of all features in a diagonal

3 The update value of this form can be obtained in the setting of linear online learning
(e.g., −ηtg

ℓ
t in a subgradient method).

Frequency-aware Truncated Methods for Sparse Online Learning 7

Fig. 1. Comparison of h
(j)
t,p against parameter p

component. In this definition, we can derive the vector in which each component

is h
(j)
t,pw

(j)
t , or Ht,pwt. Thus, from equation (5), vector component w

(j)
t tends to

be truncated when the value of h
(j)
t,p is large. If a feature is rarely occurring, the

number of updates is also small; thus, h
(j)
t,p also tends to have a small value. In

addition, if the value of a feature C is 1000 times larger than that of a feature D,

then, h
(C)
t,p is also 1000 times larger than h

(D)
t,p . Thus, we can keep the truncation

of these two features the same in effect.
We can set a wide variety of numbers into parameter p to adjust the impor-

tance of rare features. To show the roles of parameter p, we assume a simple
example, in which the scope of gradient’s value is limited to either 0 or 1, and

represent the relation between the value of h
(j)
t,p and the count of feature j’s oc-

currence. The example is illustrated in Fig. 1. A horizontal plot describes the

count of occurrence and a vertical plot shows the value of h
(j)
t,p . It indicates that

the smaller the value of p, the more slowly a rare feature is truncated. We note

that a normal L1 can be regarded as the algorithm of h
(j)
t,p = 1 for all t, j.

3.1 Subgradient method with Frequency-aware Truncation

In the following sections, we focus on the SubGradient method with Frequency-
aware Truncation, which we call SGFT.

In SGFT, we can derive the update function as follows:

w
(j)
t+1 = sign

(
w

(j)
t+1/2

) [∣∣∣w(j)
t+1/2

∣∣∣− ηt+1/2h
(j)
t,pλ

]
+

= sign
(
w

(j)
t − ηtg

ℓ,(j)
t

) [∣∣∣w(j)
t − ηtg

ℓ,(j)
t

∣∣∣− ηt+1/2h
(j)
t,pλ

]
+

. (6)

The process of deriving this updating function is the same as that by Duchi et
al.[7]. Equation (6) shows that SGFT can process one piece of data at O(d) com-

putational cost as large as SG-L1. Figures 2, 3, and 4 illustrate how h
(j)
t,p affects

the updating of wt+1/2 in the regularization step. These figures indicate that

8 H. Oiwa, S. Matsushima, H. Nakagawa.

the parameter h
(j)
t,p adjusts the intensity of truncation to retain rarely occurring

but informative features.

Fig. 2. Normal L1 Fig. 3. Small h
(j)
t,p in SGFT Fig. 4. Large h

(j)
t,p in SGFT

3.2 Regret Analysis of SGFT

In SGFT, regularization term rt is replaced with rt(wt) = λ∥Ht,pwt∥1 from
a normal L1 norm r(wt) = λ∥wt∥1. When differentiating rt with respect to a
weight vector w and applying L2 norm, we obtain

∥∂rt∥2 = λ

√√√√ d∑
k=1

(
h
(k)
t,p

)2

. (7)

From equation (7), Lemma 1 is proved.

Lemma 1. We define ∥∂f∥ as supg∈∂f(w)∥g∥2. If ∥∂ℓt∥ ≤ G, ηt = ηt+1/2 =

c/
√
t using a scalar c > 0, and h

(k)
t,p is Lp norm where p > 2, a scalar U exists

that satisfies inequality (8).

lim
t→∞

∥∂rt∥ < U . (8)

In the Appendix, we prove formula (8).

In the case of p ≤ 2, we redefine the diagonal matrix Ht as H
(k,k)
t =

min(h
(k)
t,p , V) using a scalar V . In this paper, H(i,j) represents the (i, j)-th entry

of the matrix H. In the case of p ≤ 2, we can prove that the upper bound of
∥∂rt∥ is

√
dλV . Thus, there is a scalar U where limt→∞ ∥∂rt∥ ≤ U . In this case,

we can prove that the regret bound of the SGFT is O(
√
T). The proof is in the

Appendix.

Theorem 1. We define the matrix Ht,p as

H
(k,k)
t,p =

{
min(h

(k)
t,p , V) p ≤ 2

h
(k)
t,p p > 2

(9)

Frequency-aware Truncated Methods for Sparse Online Learning 9

In addition, assume both the loss function and regularization term are convex
functions, and that they satisfy ∀wt ∥wt − w∗∥2 ≤ D, ∥∂ℓt∥ ≤ U, ∥∂rt∥ ≤ U
where setting ηt = ηt+1/2 = c/

√
t using scalars D, U , and c > 0.

In this case, the regret bound of SGFT satisfies formula (10).

Rℓ+r(T) ≤ 2UD +
(
D2/2c+ 8U2c

)√
T = O(

√
T) , (10)

where

Rℓ+r(T) =
T∑

t=1

{ℓt(wt) + rt(wt)− ℓt(w
∗)− rt(w

∗)} ,

w∗ = arg min
w

T∑
t=1

{ℓt(w) + rt(w)} .

3.3 Lazy Update

SGFT allows us to truncate parameters in a lazy fashion. We do not need to
penalize the weights of features that do not occur in the current sample, thus,
we can postpone applying the penalty at each iteration. This updating scheme
enables faster calculation when the dimension of instances is large and we have
sparse samples.

We define the absolute value of the total L1 penalty from t = 1 to n as un.

un = λ

n∑
t=1

ηt+1/2 . (11)

At each instance, before we update the parameter in step 4, we apply the L1

penalty to features that are used in the input.

w
(j)
t+1/2 =

max
(
0, w

(j)
t − (ut−1 − us−1)h

(j)
s,p

)
w

(j)
t ≥ 0

min
(
0, w

(j)
t + (ut−1 − us−1)h

(j)
s,p

)
w

(j)
t < 0

, (12)

where s is the sample number that feature j is used at the end. If the value
of us−1 is calculated at s-th update, which is the last update of the weight of
feature j, only ut, ut−1 must be derived at iteration t and the value from u1 to
ut−2 does not have to be preserved.

Second, we perform a subgradient method using wt+1/2 in step 4 and derive
wt+1. Finally, we skip step 5 to finish. In the lazy update version of SGFT, we
can compute the update at the speed of O(number of features that occur).

4 SGFT with Cumulative Penalty

Tsuruoka et al.[15] proposed a cumulative penalty model for SG-L1. The normal
SG-L1 has a problem where a solution is often obtained that is significantly

10 H. Oiwa, S. Matsushima, H. Nakagawa.

affected by the last few instances. This is because the weight easily moves away
from zero when a feature is used in the last few instances. The main idea of the
cumulative penalty model is to keep track of the total penalty. Then, we apply
a cumulative L1 penalty to smooth the effect of the update fluctuation and
move away from zero unless the updating sum exceeds the cumulative penalty.
In addition, this model can smooth the effect of the update and also suppress
noisy data. In this section, we propose a method combining our models with the
cumulative penalty model.

We begin by introducing q
(j)
t as an already applied cumulative L1 penalty of

feature j at the t-th instance. We initialize q
(j)
0 = 0 for all j. In this setting, at

step 5, we update the weight vector whose feature is used in the current instance
as follows:

w
(j)
t+1 =

max
(
0, w

(j)
t+1/2 − (h

(j)
t,put + q

(j)
t)

)
w

(j)
t+1/2 ≥ 0

min
(
0, w

(j)
t+1/2 + (h

(j)
t,put − q

(j)
t)

)
w

(j)
t+1/2 < 0

. (13)

Then, we update the parameter q
(j)
t if the feature j is used in the current instance

as follows:
q
(j)
t = q

(j)
t−1 + (w

(j)
t+1 − w

(j)
t+1/2) . (14)

In a cumulative penalty setting, we rewrite the optimization problem as if re-
turning to the previous iteration and applying the new frequency-aware adapta-

tion parameter h
(j)
t,p . This reformalization makes the update function simple and

reduce space complexity. The same as Tsuruoka et al. did, the whole frequency-
aware L1 penalty is applied at once if the following two types of weight vectors
reside within the same orthant: 1) the weight vector that had been updated by
the true gradient with the latest penalty and 2) the weight vector calculated
with the cumulative form of L1 normalization.

SGFT with cumulative penalty takes O(number of features that occur) com-
putational time at each iteration.

5 Evaluation

We evaluated our proposed frequency-aware truncated methods using classifica-
tion tasks. In the experiment, we used three datasets.

First, we used sentiment classification tasks[2] for Amazon.com goods re-
views. Classification tasks classify whether a positive or negative opinion is noted
in each review. In this dataset, we used the books and dvd categories.

Second, we used the 20 Newsgroups dataset (news20)[8]. The news20 is a
news categorization task in which a learning algorithm predicts to what category
each news article is assigned. This dataset consists of about 20,000 news articles.
Each article is assigned to one of 20 predetermined categories. We used four
subsets of news20: ob-2-1, sb-2-1, ob-8-1, and sb-8-1[11]. In each subset, the
number of categories and the closeness among categories differed. For the first
letter of each subset name, ’o’ indicates ’overlap’ and ’s’ denotes ’separated’.

Frequency-aware Truncated Methods for Sparse Online Learning 11

Classifying categories correctly is more difficult with an ’overlap’ dataset. The
second letter of the subset names means the heterogeneity among the categories
and there is no difference in the instance number among the categories. The
middle number is the number of categories.

Last, we used the Reuters-21578 [10] dataset. The Reuters-21578 also con-
sists of news articles and we used a dataset for a 20-category classification task
(reut20) from the Reuters-21578. In Table 2, we provide the specifications of
each dataset, including the number of features, instances, and categories.

Table 2. Dataset specifications

of instances # of features # of categories

books 4,465 332,441 2
dvd 3,586 282,901 2
ob-2-1 1,000 5,942 2
sb-2-1 1,000 6,276 2
ob-8-1 4,000 13,890 8
sb-8-1 4,000 16,282 8
reut20 7,800 34,488 20

In this experiment, we used the hinge-loss function as a loss function. When
there are more than two categories, it is not possible to use hinge-loss directly
because the hinge-loss function was developed for binary categorization. In our
experiment, we defined a weight vector as w ∈ Ŵ ⊂ Rd×K , where K was the
number of classes, and a feature vector as Φ(x, y), mapped from the Cartesian
product X × Y , where Y was the set of labels in the 1-of-K scheme. Moreover,
we set the loss function as formula (15).

ℓt(wt) = [1− ⟨wt, Φ(xt, yt)⟩+ max
zt∈Y \yt

⟨wt, Φ(xt, zt)⟩]+ , (15)

where yt is a correct label at t. We can process the multi-class classification tasks
as define above. In the experiment, we examined SGFT, SG-L1, and RDA[16]
to compare the precision and sparseness rates. From a family of frequency-aware
truncated methods, we selected the algorithms of p = 1, 2, 3,∞.

The step size ηt was set at ηt = ηt+1/2 = 1/
√
t to satisfy the restriction of

the regret bound in SGFT and SG-L1. Moreover, in SGFT where p = 1, 2, we
set V = 500 to satisfy the regret bound restriction4. In contrast, in RDA, we set
h(w) = 1/2∥w∥22 and βt =

√
t. In our experiment, we evaluated the performance

of our methods using a ten-fold cross-validation to achieve the highest precision
rate by adjusting the parameter λ. We set the number of iterations to 20.

The experimental results of SGFT against the change of parameter p are
shown in Table 3. The figure in [·] means the standard deviation, and the figure

4 In this experiment, the value of h
(j)
t,p did not exceed 500, thus the value of V did not

influence the result.

12 H. Oiwa, S. Matsushima, H. Nakagawa.

in (·) denotes the sparseness rate. Moreover, the highest precision rates among
all the algorithms are written in bold font.

Table 3. SGFT’s precision (sparseness) rate against parameter p (Iterations : 20)

SGFT (p = 1) SGFT (p = 2) SGFT (p = 3) SGFT (p = ∞)

books 85.23[1.52] (34.52) 85.52[1.24] (48.26) 85.14[1.33] (49.58) 85.05[1.41] (69.39)
dvd 82.49[1.68] (37.46) 84.75[1.75] (59.72) 85.03[2.28] (63.74) 84.02[1.66] (67.19)
ob-2-1 97.00[1.73] (42.78) 97.10[1.14] (56.73) 96.90[1.87] (59.03) 96.80[1.94] (59.78)
sb-2-1 98.90[0.83] (60.13) 98.40[0.80] (70.32) 98.40[1.11] (71.99) 98.10[1.14] (72.69)
ob-8-1 92.25[1.14] (62.83) 93.10[1.41] (62.84) 93.00[1.29] (64.64) 91.45[1.33] (77.78)
sb-8-1 90.90[1.72] (68.26) 92.55[1.85] (68.49) 93.78[2.44] (70.23) 91.25[1.44] (83.53)
reut20 95.23[0.65] (89.11) 96.04[0.56] (90.38) 95.91[0.55] (90.21) 94.80[0.67] (91.05)

Table 3 indicates that SGFT with p = 2 achieves the best performance in
the four datasets. Moreover, in the other three datasets, SGFT p = 2 has the
second highest precision, indicating SGFT p = 2 is an efficient learning method
in the SGFT family. Table 3 also shows that SGFT has a tendency of increasing
sparsity responding to increase of parameter p.

Table 4 illustrates the results of SG-L1 and RDA as compared with SGFT
p = 2, which showed the most efficient performance in Table 3.

Table 4. Precision (sparseness) rate (Iterations : 20)

SGFT (p = 2) SG-L1 RDA

books 85.52[1.24] (48.26) 84.98[1.61] (48.28) 86.57[1.16] (34.65)
dvd 84.75[1.75] (59.72) 83.91[1.55] (79.57) 86.36[2.08] (37.08)
ob-2-1 97.10[1.14] (56.73) 96.40[1.96] (49.23) 97.60[1.80] (39.83)
sb-2-1 98.40[0.80] (70.32) 97.20[1.78] (84.25) 98.20[0.75] (56.67)
ob-8-1 93.10[1.41] (62.84) 90.63[1.64] (87.90) 93.78[1.21] (50.52)
sb-8-1 92.55[1.85] (68.49) 90.53[1.61] (67.46) 95.45[0.95] (60.46)
reut20 96.04[0.56] (90.38) 95.53[0.63] (89.29) 96.27[0.63] (86.67)

From Table 4, SGFT is confirmed to outperform SG-L1 in all the datasets. At
the same time, SGFT does not necessarily have a smaller sparsity rate than SG-
L1. This result shows that frequency-aware truncation improves the accuracy of
precision, without degrading sparsity. From the experimental results, note that
frequency-aware truncation could improve the accuracy by retaining rarely oc-
curring but important features and dropping unimportant features. Thus, in the
setting of sparse online learning, frequency-aware truncation is a useful method
compared with the normal L1-regularization for these datasets.

We also evaluated the experimental results of RDA. The results showed that
RDA obtained the highest precision rate in these tasks except for sb-2-1, but,

Frequency-aware Truncated Methods for Sparse Online Learning 13

the rate of sparsity was smaller than SGFT. This indicates that RDA is a so-
phisticated algorithm for precise learning; however, to obtain a sparse solution,
frequency-aware truncation methods are also efficient for learning. We consider
that the margin between these two methods occur partly because RDA[16] has
the smaller regret bound than FOBOS[7] and SGFT in terms of the coefficient.

6 Conclusion

We analyzed a new family of truncated methods for retaining rarely occurring
features in an online setting. These methods integrate the sum of updates in
the loss minimization steps into the regularization step to adjust the intensity
of truncation. In this way, we can solve the problem where rarely used features
are truncated on a priority basis. Specifically, we proved the computational cost
and theoretical guarantees of SGFT, which is also known as a frequency-aware
truncated method. In addition, we provided possible extensions of our work, such
as lazy-update and cumulative-penalty schemes. Finally, we evaluated the per-
formance of our methods in experiments. The experimental results showed that
frequency-aware truncated methods could retain rarely occurring but important
features without loss of sparsity.

A few discussions for further research remain in connection with our proposed
methods. The first is the integration of frequency-aware methods into a primal-
dual averaging framework. We assume that a frequency-aware scheme could be
connected with dual-averaging methods with a minor change of frequency-aware
term’s definition. This extension would also enable us to give the same regret
bound and computational time as those for dual-averaging methods and expect
the higher performance than RDA. The second issue is whether we can optimize
parameter p in an online setting. We aim to investigate these questions and
further extensions of our proposed methods.

References

1. Bertsekas, D.P.: Nonlinear Programming. Athena Scientific (1999).
2. Blitzer, J., Dredze, M., and Pereira, F.: Biographies, Bollywood, Boom-boxes

and Blenders: Domain Adaptation for Sentiment Classification. In Association
for Computational Linguistics (ACL), 440–447 (2007), http://www.cs.jhu.edu/
∼mdredze/datasets/sentiment

3. Carpenter, B.: Lazy sparse stochastic gradient descent for regularized multinomial
logistic regression. Technical report, Alias-i (2008)

4. Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., Singer, Y.: Online Passive-
Aggressive Algorithms. Journal of Machine Learning Research, 7, 551–585 (2006)

5. Dredze, M., Crammer, K.: Confidence-weighted linear classification. In ICML, 264–
271 (2008)

6. Duchi, J., Hazan, E., Singer, Y.: Adaptive Subgradient Methods for Online Learn-
ing and Stochastic Optimization. In COLT, 257–269 (2010)

7. Duchi, J., Singer, Y.: Efficient Online and Batch Learning Using Forward Backward
Splitting. Journal of Machine Learning Research. 10, 2899–2934 (2009)

14 H. Oiwa, S. Matsushima, H. Nakagawa.

8. Lang, K.: Newsweeder: Learning to filter netnews. In International Conference on
Machine Learning (ICML), 331–339 (1995), http://mlg.ucd.ie/datasets

9. Langford, J., Li, L., Zhang, T.: Sparse Online Learning via Truncated Gradient.
J. Mach. Learn. Res. 10, 777–801 (2009)

10. Lewis, David D.: Reuters-21578. http://www.daviddlewis.com/resources/

testcollections/reuters21578

11. Matsushima, S., Shimizu, N., Yoshida K., Ninomiya, T., Nakagawa, H.: Exact
Passive-Aggressive Algorithm for Multiclass Classification Using Support Class. In
SDM, 303–314 (2010)

12. Nesterov, F.: Primal-Dual subgradient methods for convex problems. Mathematical
Programming, 120(1) 221–259 (2009)

13. Rosenblatt, F.: The Perceptron: A Probabilistic Model for Information Storage
and Organization in the Brain. Psychological Review, 65 386–408 (1958)

14. Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval.
Information Processing and Management 24(5) 513–523 (1988)

15. Tsuruoka, Y., Tsujii, J., Ananiadou, S.: Stochastic Gradient Descent Training for
L1-regularized Log-linear. In ACL-IJCNLP, 477–485 (2009)

16. Xiao, L.: Dual averaging methods for regularized stochastic learning and online
optimization. In Advances in Neural Information Processing Systems 23, (2009)

17. Zinkevich, M.: Online convex programming and generalized infinitesimal gradient
ascent. In International Conference on Machine Learning (ICML), 928–936 (2003)

Appendix

Proof of Lemma 1

Let ηt be a vector of (η1, η2, . . . , ηt). If ∥∂ℓt∥ ≤ G for all t, we can derive

h
(k)
t,p ≤ ∥Gηt∥p = G∥ηt∥p . (16)

The first inequality follows from the inequality below.

∀t, k |gℓ,(k)t | ≤ ∥gℓ
t∥2 ≤ ∥∂ℓt∥ ≤ G .

From the definition of Lp norm, we can rewrite equation (16) as

∥ηt∥p = p

√√√√ t∑
k=1

|ηk|p . (17)

Thus, if we substitute ηk with c/
√
k, we obtain equation (18).

∥ηt∥p = c p

√√√√ t∑
k=1

k−
p
2 . (18)

∑T
t=1 t

− p
2 is a zeta function. From the characteristics of zeta functions, if −p

2 <

−1, that is, p > 2,
∑t

k=1 k
− p

2 has a upper bound and thus converges as t → ∞.

Frequency-aware Truncated Methods for Sparse Online Learning 15

We set the upper limit value to S, obtaining ∥ηt∥p = cS
1
p . Then, there is a scalar

U which satisfies equation (19).

∥∂rt(w)∥ ≤ λG

√√√√ d∑
l=1

(cS
1
p)2 = cλGS

1
p

√
d ≤ U . (19)

Therefore, we can prove Lemma 1. However, in the case of p ≤ 2, we cannot

bound h
(k)
t,p because the zeta function does not converge.

Proof of Theorem 1

The procedure of the proof is similar to that by Duchi et al.[7], but, there is a
small difference because, in our methods, the regularization term depends on t
which is the number of iterations. First, we prove Lemma 2.

Lemma 2. Assume both loss function ℓt and regularization term rt have con-
vexity and satisfy equation (20).

∥∂ℓt(w)∥2 ≤ G2, ∥∂rt(w)∥2 ≤ G2 . (20)

Let step size ηt satisfy ηt+1 ≤ ηt+1/2 ≤ ηt and ηt ≤ 2ηt+1. In this case, we can
prove equation (21).

∀w∗ ∃c ≤ 5 2ηtℓt(wt)− 2ηtℓt(w
∗) + 2ηt+1/2rt(wt+1)− 2ηt+1/2rt(w

∗)

≤ ∥wt −w∗∥22 − ∥wt+1 −w∗∥22 + 8η2tG
2 . (21)

From the condition that the loss function is convex, we can derive equation
(22) in terms of any subgradient gℓ

t ∈ ∂ℓt(wt).

ℓt(w
∗) ≥ ℓt(wt)+ ⟨gℓ

t ,w
∗−wt⟩ =⇒ −⟨gℓ

t ,wt−w∗⟩ ≤ ℓt(w
∗)−ℓt(wt) . (22)

This is the case with regard to regularization term rt(·). In this paper, we denote
any subgradient of regularization term rt(wt+1) as g

r
t+1.

From the Cauchy-Shwartz inequality and equation (2), we obtain

⟨gr
t+1,wt+1 −wt⟩ = ⟨gr

t+1,−ηtg
ℓ
t − ηt+1/2g

r
t+1⟩

≤ ∥gr
t+1∥2∥ηtgℓ

t + ηt+1/2g
r
t+1∥2

≤ ηt+1/2∥gr
t+1∥22 + ηt∥gr

t+1∥2∥gℓ
t∥2

≤ (ηt+1/2 + ηt)G
2 . (23)

In the first equation above, we use wt+1 = wt − ηtg
ℓ
t − ηt+1/2g

r
t+1 derived from

the derivation of equations (2) and (5).
Then, we proceed to derive the upper bound of the difference between w∗

and wt+1 for obtaining the upper bound of ℓt(wt) + rt(wt) − ℓt(w
∗) − rt(w

∗).

16 H. Oiwa, S. Matsushima, H. Nakagawa.

We can expand the L2 norm of the difference between w∗ and wt+1 as follows:

∥wt+1 −w∗∥22 = ∥wt − (ηtg
ℓ
t + ηt+1/2g

r
t+1)−w∗∥22

= ∥wt −w∗∥22 − 2
(
ηt⟨gℓ

t ,wt −w∗⟩+ ηt+1/2⟨gr
t+1,wt −w∗⟩

)
+∥ηtgℓ

t + ηt+1/2g
r
t+1∥22

= ∥wt −w∗∥22 − 2ηt⟨gℓ
t ,wt −w∗⟩+ ∥ηtgℓ

t + ηt+1/2g
r
t+1∥22

−2ηt+1/2

(
⟨gr

t+1,wt+1 −w∗⟩ − ⟨gr
t+1,wt+1 −wt⟩

)
. (24)

The bound of the third term is derived as

∥ηtgℓ
t + ηt+1/2g

r
t+1∥22 = η2t ∥gℓ

t∥22 + 2ηtηt+1/2⟨gℓ
t ,g

r
t+1⟩+ η2t+1/2∥g

r
t+1∥22

≤ 4η2tG
2 . (25)

The upper bound of equation (24) is obtained by equations (22), (23), and (25).

∥wt+1 −w∗∥22 ≤ ∥wt −w∗∥22 − 2ηt⟨gℓ
t ,wt −w∗⟩ − 2ηt+1/2⟨gr

t+1,wt+1 −w∗⟩
+∥ηtgℓ

t + ηt+1/2g
r
t+1∥22 + 4ηt+1/2ηtG

2

≤ ∥wt −w∗∥22 + 2ηt(ℓt(w
∗)− ℓt(wt))

+2ηt+1/2(rt(w
∗)− rt(wt+1)) + 8η2tG

2 . (26)

From equation (26), we finish the proof of Lemma 2.
Next, we prove the upper bound of SGFT using Lemma 2. Zinkevich’s regret

analysis[17] for online convex programming is effective, thus, we use this method.
From Lemma 2, when we set ηt = ηt+1/2, we obtain

ℓt(wt)− ℓt(w
∗) + rt(wt+1)− rt(w

∗)

≤ 1

2ηt

(
∥wt −w∗∥22 − ∥wt+1 −w∗∥22

)
+ 4G2ηt . (27)

Then, we calculate the sum of equation (27) from t = 1 to T and derive

Rℓ+r(T) ≤ 2GD +

T∑
t=1

1

2ηt

(
∥wt −w∗∥22 − ∥wt+1 −w∗∥22

)
+ 4G2

T∑
t=1

ηt

≤ 2GD +
D2

2η1
+

D2

2

T∑
t=2

(
1

ηt
− 1

ηt−1

)
+ 4G2

T∑
t=1

ηt

≤ 2GD +
D2

2ηT
+ 4G2

T∑
t=1

ηt , (28)

from the following restriction

T∑
t=1

(rt(wt)− rt−1(wt))− rT (wT+1) ≤ ∥∂rT (w)∥∥w∥2 ≤ 2GD . (29)

The second inequality holds using ∥wt −w∗∥2 ≤ D. Assuming that ηt = c/
√
t,

we can prove the upper bound of regret is O(
√
T) from the fact that

∑T
t=1 ηt ≤

2c
√
T . Thus, we have proved Theorem 1.

