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Changing the metric (divergence)

min
x

L(x) + ψ(x)

x (t) = argmin
x∈Rp

{
⟨gt , x⟩+ ψ(x) +

1

2η
∥x − x (t−1)∥2

}
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Changing the metric (divergence)

min
x

L(x) + ψ(x)

x (t) = argmin
x∈Rp

{
⟨gt , x⟩+ ψ(x) +

1

2η
∥x − x (t−1)∥2Ht

}
∥x∥2H := x⊤Hx .

Choice of Ht

Hessian Ht = ∇∇⊤L(x (t−1)): Newton method
Fisher information matrix Ht = EZ |x(t−1) [−∇x∇⊤

x px(Z )|x=x(t−1) ]:
Natural gradient
(x is a parameter of a parametric model {px}x)

c.f. Bregman divergence.

Bϕ(x ||x ′) := ϕ(x)− ϕ(x ′)− ⟨∇ϕ(x ′), x − x ′⟩.
→ Mirror descent 5 / 59
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AdaGrad (Duchi et al. (2011))

Let

Ht = G
1
2
t + δI

for some δ ≥ 0, where Gt is either of the followings:

(Full) Gt =
t∑

τ=1

gτg
⊤
τ ,

(Diag) Gt = diag

(
t∑

τ=1

gτg
⊤
τ

)
.

AdaGrad stretches flat directions and shrinks steep directions.

Ada-SGD:

x (t) = argmin
x∈Rp

{
⟨gt , x⟩+ ψ(x) +

1

2η
∥x − x (t−1)∥2Ht

}
.

Ada-SRDA: for ḡt =
1
t

∑t
τ=1 gτ ,

x (t) = argmin
x

{
⟨ḡt , x⟩+ ψ(x) +

1

2tη
∥x∥2Ht

}
.
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Analysis of AdaGrad

Theorem

Let q = 2 for FULL, and q =∞ for Diag. Define the regret as

Q(T ) :=
1

T

T∑
t=1

(
ℓt+1(x

(t)) + ψ(x (t))− ℓt(β∗)− ψ(β∗)
)
.

Ada-SGD: ∀δ ≥ 0,

Q(T ) ≤ δ

Tη
∥x∗∥22 +

maxt≤T{∥x∗ − x (t)∥2q}/η + 2η

2T
tr
[
G

1/2
T

]
.

Ada-SRDA: for δ ≥ maxt ∥gt∥2,

Q(T ) ≤ δ

Tη
∥β∗∥22 +

∥x∗∥2q/η + 2η

2T
tr
[
G

1/2
T

]
.
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Analysis of AdaGrad

Suppose

The gradient is unbalanced:

|gt,j |2 ≤ Gj−2 (j = 1, . . . , p, ∀t).

(Ada-SGD) E[L(x (T ))− L(x∗)] ≤ C
log(p)√

T

(ordinary SGD) E[L(x (T ))− L(x∗)] ≤ C
GE[maxt ∥x (t)∥]√

T
≤ C

√
p
√
T

√
p → log(p)

Much improvement.
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AdaGrad is used in various applications including sparse learning and deep
learning.

In deep learning, we often encounter a phenomenon called plateau, that is,
we are stuck in a flat region.

It is hard to get out from plateau by standard SGD. AdaGrad adaptively
adjust the search space to get out of plateau.

AdaGrad is one of the standard optimization methods for deep learning.
Related methods: AdaDelta (Zeiler, 2012), RMSProp (Tieleman and
Hinton, 2012), Adam (Kingma and Ba, 2014).
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Nesterov’s acceleration of SGD

Assumption:

the expected loss L(x) is γ-smooth.

the variance of gradient is bounded by σ2:

EZ [∥∇βℓ(Z , β)−∇L(β)∥2] ≤ σ2.

→ combining with Nesterov’s acceleration, the convergence can be got
faster.

Acceleration for SGD: Hu et al. (2009)

Accleration for SRDA: Xiao (2010), Chen et al. (2012)

General method and analysis (including non-convex): Lan (2012),
Ghadimi and Lan (2012, 2013)

Ez1:T [Lψ(x
(T ))]− Lψ(x

∗) ≤ C
(
σD√
T
+ D2γ

T 2

)
(D is the diameter: E[∥x (t) − x∗∥2] ≤ D2 (∀t))
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Speed up of accelerated SGD

Ez1:T [Lψ(x
(T ))]− Lψ(x

∗) ≤ C

(
σD√
T

+
D2γ

T 2

)
σ2 is the variance of the gradient estimate:

EZ [∥∇βℓ(Z , β)−∇L(β)∥2] ≤ σ2.

The variance can be reduced by simply taking average:

g = ∇ℓ(z , x (t−1)) ⇒ g =
1

K

K∑
k=1

∇ℓ(zk , x (t−1))

(Variance) σ2 σ2/K

Computing independent gradients can be parallelized.

As σ → 0, the bound goes to O(1/T 2): non-stochastic Nesterov’s
acceleration.
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(a) Objective for L1 (b) Objective for Elastic-net

Numerical comparison on synthetic data with (a) L1 regularization (Lasso)
and (b) Elastic-net regularization (figure is from Chen et al. (2012)).

SAGE: Accelerated SGD (Hu et al., 2009), AC-RDA: Accelerated stochastic RDA (Xiao,

2010), AC-SA: Accelerated stochastic approximation Ghadimi and Lan (2012), ORDA:

Optimal stochastic RDA (Chen et al., 2012)
14 / 59



Accelerated SA for strongly convex objective

Assumption: Objective is µ-strongly convex and γ-smooth.

Accelerated stochastic approximation: Hu et al. (2009), Ghadimi and
Lan (2012)

Ez1:T [Lψ(x
(T ))]− Lψ(x

∗) ≤ C

(
σ2

µT
+
γR2

T 2

)
.

Multi-stage accelerated stochastic approximation: Chen et al. (2012),
Ghadimi and Lan (2013)

Ez1:T [Lψ(x
(T ))]− Lψ(x

∗) ≤ C

(
σ2

µT
+ exp

(
−C
√
µ

γ
T

))
σ = 0 gives the batch optimal rate.
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Summary of convergence rates

Online methods (expected risk minimization):
GR√
T

(non-smooth, non-strongly convex) Polyak-Ruppert averaging

G 2

µT
(non-smooth, strongly convex) Polynomial averaging

σR√
T

+
R2L

T 2
(smooth, non-strongly convex) Acceleration

σ2

µT
+ exp

(
−
√
µ

L
T

)
(smooth, strongly convex) Acceleration

G : upper bound of norm of gradient, R: diameter of the domain,
L: smoothness, µ: strong convexity, σ: variance of the gradient
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Minimax optimal rate of stochastic first order methods

min
x∈B

L(x) = min
x∈B

EZ [ℓ(Z , x)]

Condition

ĝx ∈ ∂xℓ(Z , x) is bounded as ∥E[ĝx ]∥ ≤ G (∀x ∈ B).
The domain B contains a ball with radius R.
L(x) is µ-strongly convex (µ = 0 is allowed).

Theorem (Minimax optimality (Agarwal et al., 2012, Nemirovsky and Yudin,

1983))

For any first order algorithm, there exist loss function ℓ and distribution
P(Z ) satisfying the assumption on which the algorithm must suffer

E[L(x (T ))− L(x∗)] ≥ c min

{
GR√
T
,
G 2

µT
,
GR
√
p

}
.

SGD and SRDA achieve this optimal rate.
First order algorithm: an algorithm that depends on only the loss and its
gradient (ℓ(Z , x), ĝx) for a query point x . (SGD, SRDA are included.)
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From expectation to finite sum

Online:

P(x) = E[ℓ(Z , x)] =

∫
ℓ(Z , x)dP(Z )

↓

Batch:

P(x) =
1

n

n∑
i=1

ℓ(zi , x)
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From online to batch

In the batch setting, the data are fixed. We just minimize the objective

function defined by

P(x) =
1

n

n∑
i=1

ℓi(x) + ψ(x).

� �
We construct a method that

uses few observations per iteration (like online method),

converges linearly (unlike online method):

T > (n + γ/λ)log(1/ϵ)

to achieve ϵ accuracy for γ-smooth loss and
λ-strongly convex regularization.� �21 / 59



Three methods that must be remembered

Stochastic Average Gradient descent, SAG (Le Roux et al., 2012,

Schmidt et al., 2013, Defazio et al., 2014)

Stochastic Variance Reduced Gradient descent, SVRG (Johnson

and Zhang, 2013, Xiao and Zhang, 2014)

Stochastic Dual Coordinate Ascent, SDCA (Shalev-Shwartz and

Zhang, 2013a)

- SAG and SVRG are methods performed on the primal.

- SDCA is on the dual.

22 / 59



Assumptions

P(x) = 1
n

∑n
i=1 ℓi (x)︸ ︷︷ ︸

smooth

+ ψ(x)︸︷︷︸
strongly convex

Assumption:

ℓi : Loss is γ-smooth.
ψ: reg func is λ-strongly convex. Typically λ = O(1/n) or O(1/

√
n).

Example:
Loss function

smoothed hinge loss

logistic loss

0

Regularization function

L2 regularization

Elastic net regularization

ψ̃(x) + λ∥x∥2 (with small h)

0
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Coordinate Descent
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Note on CD

failure success

Left hand side: CD fails. No descent direction.

To make CD success, the objective should have descent direction.
Ideally, separable f (x) =

∑p
j=1 fj(xj).
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Coordinate descent in primal

min
x
{P(x)} = min

x
{f (x) + ψ(x)} = min

x
{f (x) +

p∑
j=1

ψj(xj)}

Coordinate descent (sketch)

1 Choose j ∈ {1, . . . , p} in some way．(typically, random choice)

2 j-th coordinate xj is updated so that the objective is decreased,

Usually a block of coordinates are updated instead of one coordinate
(block coordinate descent).
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Coordinate descent in primal

min
x
{P(x)} = min

x
{f (x) + ψ(x)} = min

x
{f (x) +

p∑
j=1

ψj(xj)}

Coordinate descent (sketch)

1 Choose j ∈ {1, . . . , p} in some way．(typically, random choice)

2 j-th coordinate xj is updated so that the objective is decreased, e.g.,

x
(t)
j ← argminxj P(x

(t−1)
1 , . . . , xj , . . . , x

(t−1)
p ),

or
for gj =

∂f (x (t))
∂xj

x
(t+1)
j ← argminxj ⟨gj , xj⟩+ ψj(xj) +

1
2ηt
∥xj − x

(t−1)
j ∥2.

Usually a block of coordinates are updated instead of one coordinate
(block coordinate descent).
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Convergence of primal CD method

We consider a separable regularization:

minx{P(x)} = minx{f (x) + ψ(x)} = minx{f (x) +
∑p

j=1 ψj(xj)}.

Assumption: f is γ-smooth (∥∇f (x)−∇f (x ′)∥ ≤ γ∥x − x ′∥)

Cyclic (Saha and Tewari, 2013, Beck and Tetruashvili, 2013)

P(x (t))− R(x∗) ≤ γp∥x (0) − x∗∥2

2t
= O(1/t) (with isotonicity).

Random choice (Nesterov, 2012, Richtárik and Takáč, 2014)
No acceleration: O(1/t).
Nesterov’s acceleration: O(1/t2) (Fercoq and Richtárik, 2013).
f is α-strongly convex: O(exp(−C (α/γ)t)).
f is α-strongly conv + acceleration: O(exp(−C

√
α/γt)) (Lin et al.,

2014).

Nice review is given by Wright (2015).
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Stochastic Dual Coordinate Ascent, SDCA

Suppose that ∃fi : R→ R such that ℓ(zi , x) = fi (a
⊤
i x).

Let A = [a1, . . . , an].� �
(Primal) inf

x∈Rp

{
1

n

n∑
i=1

fi (a
⊤
i x) + ψ(x)

}
� �

[Fenchel’s duality theorem]

inf
x∈Rp
{f (A⊤x) + nψ(x)} = − inf

y∈Rn
{f ∗(y) + nψ∗(−Ay/n)}

� �
(Dual) inf

y∈Rn

{
1

n

n∑
i=1

f ∗i (yi ) + ψ∗
(
−1

n
Ay

)}
� �
We used the following facts:

For f (α) =
∑n

i=1 fi (αi ), we have f ∗(β) =
∑n

i=1 f
∗
i (βi ).

For ψ̃(x) = nψ(x), we have ψ̃∗(y) = nψ∗(y/n).
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We used the following facts:

For f (α) =
∑n

i=1 fi (αi ), we have f ∗(β) =
∑n

i=1 f
∗
i (βi ).
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Remarks

sup
y∈Rn

{
1

n

n∑
i=1

f ∗i (yi ) + ψ∗
(
−1

n
Ay

)}

The dual loss term
∑n

i=1 f
∗
i (yi ) is separable.

Each coordinate yi affects the objective through only the i-th data:

f ∗i (yi ),

ψ∗
(
−1

n
(a1y1 + · · ·+ aiyi + · · ·+ anyn)

)
.

→ Coordinate descent behaves like online methods!

The loss fi is smooth ⇔ f ∗i is strongly convex.

The reg func ψ is strongly convex ⇔ ψ∗ is smooth.
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Algorithm of SDCA

SDCA (Shalev-Shwartz and Zhang, 2013a)

Iterate the following for t = 1, 2, . . .

1 Pick up an index i ∈ {1, . . . , n} uniformly at random.

2 Update the i-th coordinate yi so that the objective function is
decreased.
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Algorithm of SDCA

SDCA (Shalev-Shwartz and Zhang, 2013a)

Iterate the following for t = 1, 2, . . .

1 Pick up an index i ∈ {1, . . . , n} uniformly at random.

2 Update the i-th coordinate yi :
(let A\i = [a1, . . . , ai−1, ai+1, . . . , an], and y\i = (yj)j ̸=i )

• y
(t)
i ∈ argmin

yi∈R

{
f ∗i (yi ) + nψ∗

(
− 1

n
(aiyi + A\iy

(t−1)
\i )

)
+

1

2η
∥yi − y

(t−1)
i ∥2

}
,

• y
(t)
j =y

(t−1)
j (for j ̸= i).
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Algorithm of SDCA

SDCA (linearized version) (Shalev-Shwartz and Zhang, 2013a)

Iterate the following for t = 1, 2, . . .

1 Pick up an index i ∈ {1, . . . , n} uniformly at random.

2 Calculate x (t−1) = ∇ψ∗(−Ay (t−1)/n).

3 Update the i-th coordinate yi :

• y
(t)
i ∈ argmin

yi∈R

{
f ∗i (yi )− ⟨x (t−1), aiyi ⟩+

1

2η
∥yi − y

(t−1)
i ∥2

}

• y
(t)
j =y

(t−1)
j (for j ̸= i).

If the reg func ψ is λ-strongly covnex, ψ∗ is 1/λ-smooth and thus
differentiable: x (t) = ∇ψ∗(−Ay (t)/n).
x (t) is actually the primal variable.
Computational complexity per iteration is same as online methods!
Important relation: prox(q|g∗) = q − prox(q|g). primal!
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i ∈ argmin

yi∈R

{
f ∗i (yi )− ⟨x (t−1), aiyi ⟩+

1

2η
∥yi − y

(t−1)
i ∥2

}
= prox(y

(t−1)
i + ηa⊤i x

(t−1)|ηf ∗i ),

• y
(t)
j =y

(t−1)
j (for j ̸= i).
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Convergence analysis of SDCA

Assuption:

fi is γ-smooth.
ψ is λ-strongly convex.

Theorem

Suppose there exists R such that ∥ai∥ ≤ R. Then, for η = λn/R2, we have

E[P(x̄ (T ))− D(ȳ (T ))] ≤
(
n +

R2γ

λ

)
exp

(
− T

n + R2γ
λ

)
(D(y (0))− D(y∗)).

E[·] is taken w.r.t. the choice of coordinates.

Linear convergence!
Required number of iterations to achieve ϵ:

T ≥ C

(
n +

R2γ

λ

)
log ((n + γ/λ)/ϵ) .
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Comparison with the non-stochastic method

How much computation is required to achieve E[P(x̄ (T ))− P(x∗)] ≤ ϵ?
Let κ = γ/λ (condition number).

SDCA:
(n + κ) log ((n + κ)/ϵ)

Ω((n + κ) log (1/ϵ)) iterations × Ω(1) per iteration

Non-stochastic first order method:

nκ log (1/ϵ)

Ω(κ log (1/ϵ)) iterations × Ω(n) per iteration

Sample size n = 100, 000, reg param λ = 1/1000, smoothness γ = 1:

n×κ = 108, n+κ = 105.
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Numerical comparison between SDCA, SDCA-perm (randomly shuffled
cyclic), SGD (figure is from Shalev-Shwartz and Zhang (2013a)).
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Nesterov’s acceleration of SDCA

Accelerated SDCA (Lin et al., 2014)

Set α = 1
n

√
λ
γ .

1 y (t) = ȳ (t−1)+αw (t−1)

1+α

2 Pick up an index i ∈ {1, . . . , n} uniformly at random.

3 Calculate x (t−1) = ∇ψ∗(−Ay (t−1)/n).

4 Update the i-th coordinate:

• w
(t)
i ∈ argminwi∈R

{
f ∗i (wi )−⟨x(t−1),aiwi ⟩+αn

2γ
∥wi−y

(t)
i −(1−α)w (t−1)

i ∥2
}

• w
(t)
j =(1− α)w (t−1)

j + y
(t)
i (for j ̸= i).

5 ȳ
(t)
i = y

(t)
i + nα(w

(t)
i − (1− α)w (t−1)

i − y
(t)
i ),

ȳ
(t)
j = y

(t)
j (for j ̸= i).

Shalev-Shwartz and Zhang (2014) also proposed a double-loop acceleration

method.
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Convergence of accelerated SDCA

∥ai∥ ≤ R (∀i) ∥A∥: spectral norm of A

Theorem

Convergence of acc. SDCA If

T ≥

(
n +

√
γnR2

λ

)
log

(
Cγ∥A∥22
λnϵ

)
,

then
(Duality gap) E[P(x (T ))− D(y (T ))] ≤ ϵ.

(normal)
(
n +

γ

λ

)
log((n + κ)/ϵ)

(accelerated)

(
n +

√
γn

λ

)
log((n + κ)/ϵ)
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Mini-batch SDCA

Instead of choosing one coordinate yi , we may choose a block of
coordinates yI where I ⊆ {1, . . . , n}.
Typically, {1, . . . , n} is divided into K equally sized groups: I1, . . . , IK s.t.
|Ik | = n/K ,

∪
k Ik = {1, . . . , n}, Ik ∩ Ik′ = ∅.

Mini-batch technique (Takáč et al., 2013, Shalev-Shwartz and Zhang, 2013b).

If K = n, we observe only one data at each iteration.
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Mini-batch SDCA

Mini-batch SDCA (stochastic block coordinate descent)

For t = 1, 2, . . . ,, iterate the following:

1 Randomly pick up a mini-batch I ⊆ {1, . . . , n} so that
P(i ∈ I ) = 1/K (∀i).

2 x (t−1) = ∇ψ∗(−Ay (t−1)/n).

3 Update y (t) as

• y (t)I ∈ argmin
yi (i∈I )

{ |I |∑
i=1

f ∗i (yi )− ⟨x (t−1),AI yI ⟩+
1

2η
∥yI − y

(t−1)
I ∥2

}
,

• y (t)i =y
(t−1)
i (i ̸∈ I ).

The update of yi can be parallelized:

yi = prox(y
(t−1)
i + ηa⊤i x

(t−1)|ηf ∗i ) (i ∈ I ).
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Mini-batch SDCA

Mini-batch SDCA (stochastic block coordinate descent)

For t = 1, 2, . . . ,, iterate the following:

1 Randomly pick up a mini-batch I ⊆ {1, . . . , n} so that
P(i ∈ I ) = 1/K (∀i).

2 x (t−1) = ∇ψ∗(−Ay (t−1)/n).

3 Update y (t) as

• y (t)I ∈ argmin
yi (i∈I )

{ |I |∑
i=1

[
f ∗i (yi )− ⟨x (t−1),Aiyi ⟩+

1

2η
∥yi − y

(t−1)
i ∥2

]}
,

• y (t)i =y
(t−1)
i (i ̸∈ I ).

The update of yi can be parallelized:

yi = prox(y
(t−1)
i + ηa⊤i x

(t−1)|ηf ∗i ) (i ∈ I ).
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Convergence of mini-batch SDCA

Assuption:

fi is γ-smooth.
ψ is λ-strongly convex.

Theorem

Suppose there exists R such that ∥A⊤
I AI∥ ≤ R2 (∀I ). Then, for

η = λn/R2, we have

E[P(x̄ (T ))− D(ȳ (T ))] ≤
(
K +

R2γ

λ

)
exp

(
− T

K + R2γ
λ

)
(D(y (0))− D(y∗)).

E[·] is taken w.r.t. the choice of coordinates.

T ≥ C

(
K +

R2γ

λ

)
log((n + κ)/ϵ)

achieves ϵ accuracy. → iteration complexity is improved (if R2 is not large
and parallelization is used).
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Primal methods

The key idea: reduce the variance of gradient estimate.

1

n

n∑
i=1

ℓi (x)︸ ︷︷ ︸
How to approximate this?

+ψ(x)
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Primal methods

The key idea: reduce the variance of gradient estimate.

1

n

n∑
i=1

ℓi (x)︸ ︷︷ ︸
How to approximate this?

⟨g ,x⟩

+ψ(x)

Online method: pick up î ∈ {1, . . . , n} randomly, and use linear
approximation.

g = ∇ℓ̂i (x) ⇒ E[g ] = 1
n

∑n
i=1∇ℓi (x)

This is an unbiased estimator of the full gradient.

How about variance?
→ Variance is the problem!
→ In the batch setting, it is easy to reduce the variance.
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Stochastic Variance Reduced Gradient descent,
SVRG (Johnson and Zhang, 2013, Xiao and Zhang, 2014)

minx{L(x) + ψ(x)} = minx{ 1n
∑n

i=1 ℓi (x) + ψ(x)}

� �
With fixed reference point x̂ which is close to x , a reduced variance
gradient estimator is given as

g = ∇ℓi (x)−∇ℓi (x̂) + 1
n

∑n
j=1∇ℓj(x̂)︸ ︷︷ ︸
∇L(x̂)

.

� �
Bias: unbiased,

E[g ] =
1

n

n∑
i=1

[∇ℓi (x)−∇ℓi (x̂) +∇L(x̂)] =
1

n

n∑
i=1

∇ℓi (x) = ∇L(x).

Variance ?

42 / 59



A key observation

g = ∇ℓi (x)−∇ℓi (x̂) +∇L(x̂).
Variance:

Var[g ] = 1
n

∑n
i=1 ∥∇ℓi (x)−∇ℓi (x̂) +∇L(x̂)−∇L(x)∥

2

= 1
n

∑n
i=1

∥∥∇ℓi (x)−∇ℓi (x̂)∥2 − ∥∇L(x̂)−∇L(x)∥∥2
(∵ Var[X ] = E[∥X∥2]− ∥E[X ]∥2)

≤ 1
n

∑n
i=1 ∥∇ℓi (x)−∇ℓi (x̂)∥2

≤ γ∥x − x̂∥2.

The variance could be small if x and x̂ are close and ℓi is smooth.

Main strategy:

Calculate the full gradient at x̂ .
Update xt several times, say, O(n) times.
Set x̂ = xt .
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}

}

}

Variance
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Algorithm of SVRG

The algorithm consists of inner loop and outer loop.

SVRG

For t = 1, 2, . . . , iterate the following:

1 Set x̂ = x̂ (t−1), x[0] = x̂ ,

ĝ = ∇L(x̂) = 1
n

∑n
i=1∇ℓi (x̂). (full gradient)

2 For k = 1, . . . ,m, execute the following:
1 Uniformly sample i ∈ {1, . . . , n}．
2 Set

g = ∇ℓi (x[k−1])−∇ℓi (x̂) + ĝ . (variance reduction)

3 Update x[k] as
x[k] = prox(x[k−1] − ηg |ηψ).

3 Set x̂ (t) = 1
m

∑m
k=1 x[k].

Computational complexity until t iteration: O(t × (n +m)).
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Convergence analysis

Assuption: ℓi is γ-smooth, and ψ is λ-strongly convex.

Theorem

If η and m satisfy η > 4γ and

ρ := η
λ(1−4γ/η)m + 4γ(m+1)

η(1−4γ/η)m < 1,

then, after T iteration the objective is bounded by

E[P(x̂ (T ))− P(x∗)] ≤ ρT (P(x̂ (0))− P(x∗))

The assumption of the theorem is satisfied by

m ≥ Ω
(γ
λ

)
.

Inner loop computation O(n +m) for each t.
Outer loop iteration T = O(log(1/ϵ)) until ϵ accuracy.

⇒ The whole computation :

O ((n +m) log(1/ϵ)) = O
(
(n +

γ

λ
) log(1/ϵ)

)
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Numerical comparison between several stochastic methods on a batch
setting (figure is from Xiao and Zhang (2014)). 47 / 59



Related method: SAGA

SAGA (Defazio et al., 2014) does not require the double-loop,
but requires more memory.
Difference: the gradient estimate g

(SAGA) g = ∇ℓi (x (t−1))−∇ℓi (x̂i ) +
1

n

n∑
j=1

∇ℓj(x̂j)

(SVRG) g = ∇ℓi (x (t−1))−∇ℓi (x̂) +
1

n

n∑
j=1

∇ℓi (x̂)

x̂ depends on the data index i ∈ {1, . . . , n}.
x̂i is updated at every iteration:{

x̂i = x (t−1) (if i is chosen at the t-th round),

x̂j is not changed (∀j ̸= i).

- Update rule of x (t) is same: x (t) = prox(x (t−1) − ηg |ηψ).
- We need to store all gradients ∇ℓi (x̂i ) (i = 1, . . . , n).
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Algorithm of SAGA

SAGA (Defazio et al., 2014)

1 Pick up i ∈ {1, . . . , n} uniformly at random.

2 Update g
(t)
j (j = 1, . . . , n) as

g
(t)
j =

{
∇ℓi (x (t−1)) (i = j),

g
(t−1)
j (otherwise).

3 Update x (t) as

vt = g
(t)
i − g

(t−1)
i +

1

n

n∑
j=1

g
(t−1)
j ,

x (t) = prox(x (t−1) − ηvt |ηψ).
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Convergence of SAGA

Assumption: ℓi is γ-smooth and λ-strongly convex (λ = 0 is allowed)
(∀i = 1, . . . , n)．

Theorem

Set η = 1/3γ. Then

λ = 0: for x̄ (T ) = 1
T

∑T
t=1 x

(t), it holds that

E[P(x̄ (T ))− P(x∗)] ≤ 4n

T
C0.

λ > 0:

E[∥x (T ) − x∗∥2] ≤
(
1−min

{
1

4n
,
λ

3γ

})T

C1.

SAGA is adaptive to the strong convexity λ.
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Stochastic Average Gradient descent, SAG

Like SAGA, SAG is also a single-loop method (Le Roux et al., 2012,
Schmidt et al., 2013).
Historically SAG was proposed earlier than SVRG and SAGA.
Proximal technique can not be involved in SAG
→ SAGA was proposed to overcome this drawback.

P(x) =
1

n

n∑
i=1

ℓi (x) ≃ ⟨g , x⟩.

(SAG) g =
∇ℓi (x (t−1))−∇ℓi (x̂i )

n
+

1

n

n∑
j=1

∇ℓj(x̂j)

g is biased.

(SAGA) g = ∇ℓi (x (t−1))−∇ℓi (x̂i ) + 1
n

∑n
j=1∇ℓj(x̂j)

(SVRG) g = ∇ℓi (x (t−1))−∇ℓi (x̂) + 1
n

∑n
j=1∇ℓi (x̂)
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Algorithm of SAG

SAG

Initialize g
(0)
i = 0 (i = 1, . . . , n).

For t = 1, 2, . . . , iterate the following:

1 Pick up i ∈ {1, . . . , n} uniformly at random.

2 Update g
(t)
i ′ (i ′ = 1, . . . , n) as

g
(t)
i ′ =

{
∇ℓi (x (t−1)) (i = i ′),

g
(t−1)
i ′ (otherwise).

3 Update x (t) as

x (t) = x (t−1) − η

n

n∑
j=1

g
(t)
j .
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Convergence analysis of SAG

Assumption: ℓi is γ-smooth and P(x) = 1
n

∑n
i=1 ℓi (x) is λ-strongly

convex (λ = 0 is allowed)．
Milder condition than SAGA because the strong convexity is about P(x)
rather than the loss function ℓi .

Theorem (Convergence rate of SAG)

Set η = 1
16γ . Then SAG converges as

λ = 0: x̄ (T ) = 1
T

∑T
t=1 x

(t)に対し，

E[P(x̄ (T ))− P(x∗)] ≤ 32n

T
C0

λ > 0:

E[∥x (T ) − x∗∥2] ≤
(
1−min

{
1

8n
,
λ

16γ

})T

C0.

SAG also has adaptivity. 53 / 59



Catalyst: Acceleration of SVRG, SAG, SAGA

Catalyst (Lin et al., 2015)

Iterate the following for t = 1, 2, . . . :

1 Find an approximated solution of a modified problem which has
higher strong convexity:

x (t) ≃ argminx
{
P(x) + α

2 ∥x − y (t−1)∥2
}

(up to ϵt precision).

2 Accelerate the solution: y (t) = x (t) + βt(x
(t) − x (t−1)).

− Catalyst is an acceleration method of an inexact proximal point alg.
− For ϵt = C (1−

√
λ/2(λ+ α))t ,

P(x (t))− P(x∗) ≤ C ′
(
1−

√
λ

2(λ+α)

)t

.

− Using SVRG, SAG, SAGA with α = max{c γn , λ} in the inner loop

achieves (n +
√

γn
λ ) log(1/ϵ) overall computation.

− This is a universal method but is sensitive to the choice of the inner
loop iteration number and α. 54 / 59



Summary and comparison of batch methods

Properties of the batch methods
Method SDCA SVRG SAG

P/D Dual Primal Primal
Memory efficiency ✓ ✓ △

Acceleration (µ > 0) ✓ Catalyst Catalyst
Other remark ℓi (β) = fi (x

⊤
i β) double loop smooth reg.

Convergence rate (up to log term of γ, µ)
Method λ > 0 λ = 0 Acceleration (µ > 0)

SDCA (n + γ
λ) log(1/ϵ) - (n +

√
nγ
λ ) log(1/ϵ)

SVRG (n + γ
λ) log(1/ϵ) - (n +

√
nγ
λ ) log(1/ϵ)

SAG (n + γ
λ) log(1/ϵ) γn/ϵ (n +

√
nγ
λ ) log(1/ϵ)

: Catalyst.

As for µ = 0, Catalyst gives an acceleration with convergence rate O(n
√

γ
ϵ ).
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Minimax optimal convergence rate

Let κ = γ
λ be the condition number.

The iteration number
T ≥ (n + κ) log(1/ϵ)

is almost minimax, but not minimax.

The accelerated version

T ≥
(
n +
√
nκ
)
log(1/ϵ)

is minimax up to log(1/ϵ) (Agarwal and Bottou, 2015).
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Minimax optimality in the batch setting

P(x) =
1

n

n∑
i=1

ℓi (x) +
λ

2
∥x∥2

Assumption: ℓi is (γ − λ)-smooth (γ > λ).

First order oracle: for an input (x , i), it returns the pair (ℓi (x),∇ℓi (x)).
First order algorithm: an algorithm that depends on only the return of the
first order oracle for a query point x .
(SAG, SAGA, SVRG are included. SDCA is not included.)

Theorem (Minimax optimal rate for FOA (Agarwal and Bottou, 2015))

For any first order algorithm, there exist functions ℓi (i = 1, . . . , n)
satisfying the assumption on which the algorithm must perform at least

T ≥ Ω(n +
√

n(κ− 1) log(1/ϵ))

calls for the first order oracle to get ∥x (T ) − x∗∥ ≤ ϵ∥x∗∥.
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Summary of part II

Getting faster the stochastic optimization methods

AdaGrad: adaptive choice of the step size
Acceleration of stochastic approximation

Non strongly conv: σR√
T
+ R2L

T2

Strongly conv: σ2

µT
+ exp

(
−
√

µ
L
T
)

Batch optimization methods

SDCA, SVRG, SAG, SAGA
Variance reduction
exp

(
− 1

n+µ
L
T
)
convergence

exp

(
− 1

n+
√

nµ
L

T

)
convergence with acceleration

Next part: stochastic alternating direction method of multipliers for
structured regularization and distributed optimization
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