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Regularized learning problem

Lasso:

x€ERP N “ 1 ~——
1=

regularization
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Regularized learning problem

Lasso:

xe€RP N

i=1

regularization

General regularized learning problem:

ol T .
i n.zlfi(zi x) + (x).

Difficulty: Sparsity inducing regularization is usually non-smooth.



Proximal mapping

Regularized learning problem:

gtea (n ZI lf(z X)) |x x(t=1)5 gt 12::18'7—.

Proximal gradient descent:

<9 argmin g7 x-+ 606) + -l = xCIE
x€ERP
Regularized dual averaging:

- 1
) — argmin{gr X+ (x)+ ||x||2} .
XERP 2U:

A key computation is the proximal mapping:

~ ~ 1
prox(ald) i= argmin { 709 + 3~ alP } |
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Example of Proximal mapping: /; regularization

. 1
prox(alCll ) = argemin { Cllxls + 3 1x - o2}
= (sign(g;) max(|q;| — C,0));.

— Soft-thresholding function. Analytic form.

There are also many regularization functions for which computing the prox
mapping is difficult.
— Structured regularization.



Examples of structured regularization

@ Overlapped group lasso

T.Ugl

d(w) = C Y lIwellg L
ged

Wy,

(g > 1; typicallyg = 2, 00)

@ The groups may have overlap.
o It is difficult to compute the proximal mapping.

Application (1)

N 12 D 0 )

{ N4 R> R N4
> & S| e &
Haplotype 1|CAGATCGCTGAATGAATICGCATCTGT
Haplotype 2 [CAGATCGCTGAATGGATICCCATCAGT]
Haplotype 3 [CGGATTGCTGCATGGATCCCATCAGT|

Haplotype 4 (CGGATTGCTGCATGAATICGCATCTGT

Groupl Group2 Group3

Genome Wide Association Study (GWAS)
(Balding ‘06, McCarthy et al. ‘08)



Application of group reg. (2)

@ Sentence regularization for text classification (Yogatama and Smith,
2014)

The words occurred in the same sentence is grouped:

D Sq4

P(w) =D Aaslwas)ll2.

d=1s=1

(d expresses a document, s expresses a sentence).

Table 4. A review from Amazon dvd review dataset categorized as a positive review. Each line is a sentence identified by the sentence
segmenter. There are five sentences in this article. Selected sentences in the learner’s copy variables are highlighted in blue and bold. We
also display the color-coded log-odds scor iscussed in the text (sentence, elastic, » lasso) based on removing each sentence
for each competing model. We only display scores that are greater than 10~ in absolute values.

Sentence Negative Positive

this film is one big joke : you have all the basics elements e (0.42)
of romance ( love at first sight , great passion , etc . ) and gangster flicks  (0.22)

( brutality , dagerous machinations , the mysterious don , ete. ) . (0.07)

but it is all done with the crudest humor . — (0.48)
it " s the kind of thing you either like viserally and mm (0.01)
immediately ” get” or youdon " t . mm (0.01)

that is a matter of taste and expectations . mm (0.01)

i enjoyed it and it took me back to the mid80s ,  (0.02)
when nicolson and turner were in their primes . mm (0.01)

the acting is very good , if a bit obviously tongue - in - cheek . mm (0.01)
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(Generalized) Fused Lasso and TV-denoising

Fused lasso (Tibshirani et al. (2005), Jacob et al. (2009)): "
4

=C > Ixi—xl ’W "

(ij)eE 0
" e Q Lo

TV-denoising (Rudin et al., 1992, Chambolle, 2004):

¢(X) = CZ \/|X,'_|_1’j —X,"j|2 + |X,',j+1 — XiJ|2.
ij

T T T T
0 200 400 600 00 1000

eeeeeeeeee

Genome data analysis by Fused lasso (Tibshi-  Image restoration (Mairal et al., 2009)

rani and Taylor, 2011) 10/62



Other examples

@ Robust PCA (Candés et al. 2009).

@ Low rank tensor estimation (Signoretto et al., 2010; Tomioka et al.,

2011).
@ Dictionary learning (Kasiviswanathan et al., 2012; Rakotomamonjy,
2013).
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Solutions

Developing a sophisticated method for each regularization: Jacob
et al. (2009), Yuan et al. (2011).

Submodular optimization: Bach (2010), Kawahara et al. (2009),
Bach et al. (2012)

Decomposing the proximal mapping: Yu (2013)

Applying linear transformation to make the regularization simpler.

— Alternating Direction Method of Multipliers, ADMM.



Outline

@ Stochastic optimization for structured regularization

@ Alternating Direction Method of Multipliers (ADMM)
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Linear transformation, Decomposition technique

e Overlapped group lasso )(w) = CD ges Wl
X It is difficult to compute the proximal mapping.

Solution: wg, B wg,
@ Prepare 1 for which proximal wg,
mapping is easily computable. v
o Let ¢)(B"w) = (w), and utilize wg,
the proximal mapping w.r.t. 9. Y B

Decompose into independent groups:

wg,

() =C > vl

gleﬁl

w C
o) = (avmexf1- ol
||qg’|| g/ce’

14 /62
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Another example

@ Graph guided regularization

J(w) = Wi — wj]. “@ or
P(w) CW)ZEEI xB

Ty

()= CD lvel, y=BTw=(wi—w)ijee
ecE

$(BTw) = ih(w),
prox(qly) = (qemax {1 — ﬁ,O}LGE.

Soft-Thresholding function.
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Optimizing composite objective function
with linear constraint

mXin % Z fi(z! x) + (B x)

& =3 fi( t. y=B"x.
lenlz;zx+¢()s y X

Augmented Lagrangian

£(x,y, A Zfz X)+ () + AT (y = BTx) + £lly — BTx|

inf sup L(x, y, A)
X,y by

yields the optimization of the original problem.

@ The augmented Lagrangian is the basis of the method of multipliers
(Hestenes, 1969, Powell, 1969, Rockafellar, 1976). 1662



Method of multipliers

I’)T('II;] { f(x)+9¢(y) st. Ax+ By =0}

£(w,y, ) = F(x) + () + AT (Ax + By) + & | Ax + By

Method of multipliers (Hestenes, 1969, Powell, 1969)

(x®, y®) = argmin L(x, y, \t7)
()

AD) — (=1 p(Ax(t) + By(t))
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Method of multipliers
Tl}p { f(x)+9¢(y) st. Ax+ By =0}

£(w,y, ) = F(x) + () + AT (Ax + By) + & | Ax + By

Method of multipliers (Hestenes, 1969, Powell, 1969)
(x®, y(0) = argmin £(x, y, At7Y)

(x¥)

A0 — A1) p(Ax(t) + By(t))

Remark:
o Update of A corresponds to gradient ascent of L.
o It is easy to check that

V(F(x) + (A, Ax + By )]y
Vy ((y) + A, A 4 By))| o
If Ax(t) + By(t) = 0, this give the optimality condition.

=0
=0.
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Alternating Direction Method of multipliers
(Douglas-Rachford splitting)

I’)T('II;] { f(x)+9¢(y) st. Ax+ By =0}

£(w,y, ) = F(x) +(y) + AT (Ax + By) + & | Ax + By

Alternating Direction Method of Multipliers (Gabay and Mercier, 1976)

x{) = argmin £(x, y(t=1, A1)
y® = argmin £(x(®), y, \(E71)
y

A — \(=1) p(Ax(t) + By(t))
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Alternating Direction Method of multipliers
(Douglas-Rachford splitting)

r)r(u;] { f(x)+9¢(y) st. Ax+ By =0}

£(w,y, ) = F(x) +(y) + AT (Ax + By) + & | Ax + By

Alternating Direction Method of Multipliers (Gabay and Mercier, 1976)

x() = argmin L(x, yED A=)
y® = argmmﬁ( ®) y A1)

A0 — )\(t 1 p(Ax( ) + Byt ))

o ADMM converges to the optimal (Mota et al., 2011)

e O(1/t) convergence in general (He and Yuan, 2012)

@ Linear convergence for a strongly convex objective (Deng and Yin,
2012, Hong and Luo, 2012)

18 /62



ADMM for structured regularization
min{f(x) + (BTw)} & min{f(x) + ¥(y) sty = B'x}

L{x,y,A) = f(x) + () + AT (y = BTx) + §lly = B x]]?

ADMM for structured regularization

x®) = arg min{f(x) + )\(t_l)T(—BTX) + gHy(t_l) - B"x||*}
_ T
P9 = argmin{o(y) + X9y + Sy = BT

(= prox(BTx) — X /plyy/p))
A — Z\(=1) p(BTX(t) —y(®)

@ The update of y is given by the proximal mapping w.r.t. simple 2.
— Usually analytic form.
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ADMM for structured regularization
min{f(x) + (BTw)} & min{f(x) + ¥(y) sty = B'x}

L{x,y,A) = f(x) + () + AT (y = BTx) + §lly = B x]]?

ADMM for structured regularization

x®) = arg min{f(x) + )\(t_l)T(—BTx) + gHy(t_l) - B"x||*}
X
_ T
P9 = argmin{o(y) + X9y + Sy = BT

(= prox(BTx) — X /plyy/p))
A — Z\(=1) p(BTX(t) —y(®)

@ The update of y is given by the proximal mapping w.r.t. simple 2.
— Usually analytic form.

o However, the computation of 1 3™ £(zTw) is still heavy.
— Stochastic version of ADMM has been developed (Suzuki, 2013,
Ouyang et al., 2013, Suzuki, 2014).
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Example: ADMM for Lasso

1
min{ 5512x = Y1+ Clxl }

ADMM for Lasso

ZTZ I\ ‘(Y
1 — Pt AN G RV (25|
x < 2n + 2) <n * 24 >

y(t) = ST%(x(t) _ )\(t)/p)
A = \(E=1) (k8 (1))

STy (x) = (sign(x;) max{[x;| —n,0});
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Outline

@ Stochastic optimization for structured regularization

@ Stochastic ADMM for online data
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Table of literature

Stochastic methods for regularized learning problems.

Normal

ADMM

Online

e Proximal gradient type (Nesterov,
2007)
FOBOS (Duchi and Singer, 2009)

e Dual averaging type (Nesterov, 2009)
RDA (Xiao, 2009)

Online-ADMM  (Wang and Baner-
jee, 2012)

SGD-ADMM (Suzuki, 2013, Ouyang
et al., 2013)

RDA-ADMM (Suzuki, 2013)

Batch

SDCA (Shalev-Shwartz and Zhang, 2013)
(Stochastic Dual Coordinate Ascent)
SAG (Le Roux et al., 2013)

(Stochastic Averaging Gradient)

SVRG (Johnson and Zhang, 2013)
(Stochastic Variance Reduced Gradient)

SDCA-ADMM (Suzuki, 2014)

Online type: O(1/v/T) in general,

O(log(T)/T) or O(1/T) for a

Batch type: linear convergence.

strongly convex objective.

N
N
=)
(]




Reminder of online stochastic optimization

8t € 0le(xt), Bt = £ 2718 (Le(x) = Uz, %))

OPG (Online Proximal Gradient Descent)

. . 1
——— {<gt,x> 00+ o ||x—xt||2}
X t

RDA (Regularized Dual Averaging; Xiao (2009), Nesterov (2009))

. _ & 1
Xt41 = argmin {(gt,x> + ¥(x) + 5 ||x||2}
X Nt

These update rule is computed by a proximal mapping associated with @Z

o Efficient for a simple regularization such as ¢; regularization.
@ How about structured regularization? — ADMM.
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OPG-ADMM

Ordinary OPG: x;+1 = arg min,, {(gt,x> +(x) + %MHX — xt||2} .

OPG-ADMM

X¢41 =argmin {gth — Xt (B'x—yt)
xeX

p 1
H5IBTx =yl + 5l = el |,

: P
yerr =argmin {i(y) = N(BTxer1 =) + 518 s~ yIP
ye

At41 =A¢ — P(BTXtH — Yr+1)-

@ The update rule of y;11 and A;11 are same as the ordinary ADMM.
@ prox(-|¢) is usually analytically obtained.
@ G; is any positive definite matrix.
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OPG-ADMM

Ordinary OPG: x;+1 = arg min,, {(gt,x> +(x) + %MHX — xt||2} .

OPG-ADMM

X¢+1 =argmin {gt—rx — X (BT —y)
XEX

1
5 IBTx =yl + 5l = el |,

yerr =argmin {i(y) = N (B w1 =) + 518 xesa — yIP
ye

:PYOX(BTXtJrl = At/ plY),
At+1 =A¢ — P(BTXtH — Yr+1)-

@ The update rule of y;11 and At;1 are same as the ordinary ADMM.
@ prox(-|¢) is usually analytically obtained.
@ Gy is any positive definite matrix.

24 /62



RDA-ADMM

Ordinary RDA: w;1 = arg min,, {(gt, w) + p(w) + %m||w||2}

RDA-ADMM
Let X; = %25:1 X, A = %25:1 Ar, Yo = %E::I Yr, 8t = %Zizl &r-

X¢y1 =argmin {g—th — (Bj\t)—rx + £||BTX”2
XEX 2t

_ _ 1
(TR~ 7) BTx+ oI,
Nt

Yer1 =prox(B ' xe1 — Ae/plth),
At41 =A¢ — P(BTXt+1 - }/t+1)-

The update rule of y;11 and A¢;1 are same as the ordinary ADMM.

25 /62



Simplified version

Letting G; be a specific form, the update rule is much simplified.
(Ge =~I — n,BBT for RDA-ADMM, and G; = v/ — pn:BB" for OPG-ADMM)

Online stochastic ADMM
@ Update of x

(OPG-ADMM)  x¢11 = My [—Zf{gt — B(A\t — pBTxt + pyr)} + xt] ,
(RDA-ADMM)  x;,1 = My [—?{gt — B\t —pB R + p)_/t)}} :

@ Update of y
Yt+1 = PTOX(BTXtH — Ae/plt).

@ Update of A

A4l = A — p(BTle — Yt+1)-

e Fast computation.
o Easy implementation. 2662



Convergence analysis
We bound the expected risk:

@ Expected risk 5
P(x) = Ez[((Z, x)] + ¥(x).

Assumptions:

(A1) 3G s.t. Vg € 04l(z, x) satisfies ||g|| < G for all z, x.

(A2) 3L s.t. Vg € 0vY(y) satisfies ||g|| < L for all y.
(A3) IR s.t. Vx € X satisfies ||x|| < R.



Convergence rate: bounded gradient

(A1) 3G s.t. Vg € 0xl(z, x) satisfies ||g|| < G for all z, x.
(A2) 3L s.t. Vg € 0y(y) satisfies ||g|| < L for all y.
(A3) 3R s.t. Vx € X satisfies ||x]| < R.

Theorem (Convergence rate of RDA-ADMM)
Under (A1), (A2), {A3), we have

T

- 5 1 Ne—1 Vg K

EZl:Tfl[P(XT) - P(X )] < 7 Z : )G2 + 7||X ||2 + =
t=2

2(t—1 nr T

A\

Theorem (Convergence rate of OPG-ADMM)

Under (A1), (A2), (A3), we have

Eor 1 [P(R7) = P(<)] Sk Sl max {2 - -2 0} R?

1 T nt -2 K
T T 126+ T

Both methods have convergence rate O (#) by letting ; = no+/t for
RDA-ADMM and 7; = 19/+/t for OPG-ADMM.
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Convergence rate: strongly convex

(A4) There exist of,04 > 0 and P, Q > O such that
EZ[U(Z,x) + (X' = x) ' Vxl(Z, x)] + %HX ~ X5 < Ez[((Z,X)],
o
D)+ =) V) + SNy~ 1l

for all x,x’ € X and y,y’ € ), and 3o > 0 satisfying

poy

| < ofP 4+ —-—
ol X orf +2,0+0'1p

The update rule of RDA-ADMM is modified as
- 1
xerr = argmin { g x — A B x+ 2| BTx|[? + p(BTxt — 7¢) B x + |||}
xeX 2t 27]1’ ¢

7 - %)
+ Zlx - )2}



Convergence analysis: strongly convex

Theorem (Convergence rate of RDA-ADMM)

Under (A1), (A2), {A3), (A4), we hqrve
1 1 ¥ K

Er i [PRT) = PO <= ) G2+ —|x* P+ =.
L [P(XT) = PX)] < o 2 T, il

Theorem (Convergence rate of OPG-ADMM)

Under (A1), (A2), (A3), (A4), we havg
Ezr 1 [P(R7) = P(<)] < Sl max {2 - 22— 0,0} R2

1NT nee2 . K
t =26+ T

Both methods have convergence rate O (M) by letting 1y = not for
RDA-ADMM and n; = 1o/t for OPG-ADMM.

This can be improved to O(1/T) by weighted averaging (Azadi and Sra,
2014).

30 /62



Numerical experiments

Expected Risk

——OPG-ADMM
—#-RDA-ADMM
-<~NL-ADMM
—<RDA
-5-0PG

1

1A :
CPU time (s)

Figure: Artificial data: 1024 dim,

512 sample, Overlapped group lasso.

.
10 1—+—0PG-ADMM
—#RDA-ADMM
-<~NL-ADMM

—<RDA

Classification Error

10’ . 10‘2
CPU time (s)

Figure: Real data (Adult, a9a):
15,252 dim, 32,561 sample,
Overlapped group lasso + /1 reg.
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Related methods

e O(n/T) (improved from O(1/+/T)) convergence in a batch setting:

Zhong and Kwok (2014)
@ Acceleration of stochastic ADMM: Azadi and Sra (2014)

@ Parallel computing with stochastic ADMM: Wang et al. (2014)



Outline

@ Stochastic optimization for structured regularization

@ Stochastic ADMM for batch data
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Batch setting

In the batch setting, the data are fixed. We just minimize the objective
function defined by

S el x) + 0BT ).
i=1

o ADMM version of SDCA

o Converges linearly:
T > (n+y/\)log(1/€)

to achieve e accuracy for -smooth loss and

A-strongly convex regularization.
N J

34 /62



Dual problem

Dual problem
Let A= [a1,ap,...,a, € RPX",

mln{ Zf aj w) + 1 BTW)} (P: Primal)

— —  min { Zf* 1) + 0t <%> ‘Ax—i—By:O} (D: Dual)

x€ERN yeRd

Optimality condition:
1
al w* € Vi (x), ;y* € Vy(u)| g7y~ AX" + By* =0.

% Each coordinate x; corresponds to each observation a;.

35/62



SDCA-ADMM

Let the augmented Lagrangian be
L(x,y,w) = 31 £(xi) + np*(y/n) = (w, Ax + By) + §||Ax + By|>.

Basic algorithm

Foreach t =1,2,...
Choose i € {1,...,n} uniformly at random, and update

1
y® argmin { LD, y, D) + |y - y<f—l>||é}
y

xl.(t) <—argmin{ ([X“ (t— 1)] y(® wlt= 1))+ HX/ i(t_l)H%;,»,,-}
x;i€R

w(® — w1 —epln(Ax® 4+ By(D)—(n — 1)(AxED) + By(t=D)},

Q. Gj; are positive definite matrices that satisfy some condition.
@ Only i-th coordinate x; is updated.
@ The update of the multiplier w should be modified.
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SDCA-ADMM

Let the augmented Lagrangian be
L(x,y,w) = 31 £(xi) + np*(y/n) = (w, Ax + By) + §||Ax + By|>.

Split the index set {1,...,n} into K groups (1, b, ..., k).

Block coordinate SDCA-ADMM

Foreach t =1,2,...
Choose k € {1,..., K} uniformly at random, and set | = I,

1
y®) < argmin {ﬁ(x(t‘l),y, w(t=Dy 4 Slly = y(t_l)llé}
y

. _ 1 _
4 ¢ arg min { £(pa; <1,y O, wED) 1 Zlx XV, )
X/ERIII
w(® — wt=D _ epfn(Ax + By()—(n — n/K)(Ax(t~D + By(t=DY},

v

Q. Gy, are positive definite matrices that satisfy some condition.
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Simplified algorithm
Setting

Q = p(nsly — B'B), G = p(nz1y — Z' Z)),

then, by the relation prox(q|vy) + prox(q|v*) = q, we obtain the following
update rule:

Simplified algorithm
@ For g() = y(t=1) 4 %{W(t_l) — p(Zx=D 4 By(t=1)}, let

¥ ¢ — prox(q|mp(pms - )/(pn8)),

@ For pft) = x,(tfl) + %{W(t_l) = p(Zx(t_l) + By(t))}, let

0  prox(p| £ /(omz.)) (Vi€ D).

% The update of x can be parallelized.

38/62



Convergence Analysis

x*: the optimal variable of x

Y*: the set of optimal variables (not necessarily unique)
w*: the optimal variable of w

Assumption:

@ There exits v > 0 such that, Vx; € R,

xi = ;1>

fr(xi) = £707) 2 (VA (), % = x7) + 2

3h, vy, > 0 such that, for all y, u, there exists y* € }* such that

Vi (y/n) = (v /n) = (BT w",y/n—y*/n) + %HPKer(B)(y/n =y /ml?,

A
Z|ju—BTw* |

U() = H(B W) = & nu— BTw) + 5

@ BT is injective.
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Fo(x.y) =4 Sy £ () + 07 (5) — (w*, A% — BY).

RD(X>Y7 W) = FD(Xay) - FD(X*vy*) + 2n2§p”w - w H2 + p ||AX+
Byl + & lx = X2y + aelly — vl

Theorem (Linear convergence of SDCA-ADMM)

Let H be a matrix such that H;; = pAl A+ Gy forall | € {h,..., Ik},

= min 1 Apomin(B T B) Kvy /n Komin(BB )
= 4(1+yomax(H))’ 2max{1/n,4Xp,4A0max(Q) } 7 40max (@)’ 40 max(@) (P YTmax (AT A)+4)
= 4", and C; = Rp(x©, y(© w(©)  then we have that
: (B (0 AT
(dual residual) E[Rp(x(?),y | < ( - R) G,
n t
(primal variable) E[|[w(® — w*||?] < 7” ( - %) Ci.

For t > C’% log (€-7), we have that E[||w(®) — w*||?] <.
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Convergence Analysis
Assumption:
@ f; is y-smooth.
e 7 is A-strongly convex.

@ Other technical conditions.

With a setting p = min{1,1/~} and K = n,

tZC(n—&—}\/)Iog(i/)

gives E[[w(®) — w*||?] < € (1 is like the condition number).

The rate is as good as the ordinary SDCA.

Non stochastic method (e.g. ADMM in dual):

) /
t> Cnllog <C> :
A €

41/62



Numerical Experiments: Loss function

Binary classification.
(yiu 2 1)?

— yiu, (yiu < 0),
(1 — y;u)?, (otherwise).

Smoothed hinge loss: fi(u) =

NIk NIk O

= proximal mapping is analytically obtained.

T (Fl< <o),
Cuy;—
prox(ulff/C) = —y; (1> St

0 (otherwise).




Numerical Experiments (Artificial data): Setting

Artificial data: Overlapped group regularization:

32 32
(X)) = CO Xl + D 11Xl +0.01 x >~ X2/2),
i=1 j=1 i

X € R32X32

43 /62



Numerical Experiments (Artificial data): Results

4 —<RDA
-ﬁ 3 & —+OPG-ADMM
o4 3 N 2 o —-RDA-ADMM
Ok o S -5 OL-ADMM
g V& A o] -$-Batch-ADMM
= LW Bis c SDCA-ADMM
S’y T e 1 3 2
i ] g
0s o O o “Fxd
w0’ I e - e
CPU time (s) CPU time () CPU time (s)
(a) Excess objective value (b) Test loss (c) Class. Error

Figure: Artificial data (n=5,120, d=1024). Overlapped group lasso. Mini-batch
size n/K = 50.
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Numerical Experiments (Artificial data): Results

% 04 iy SCRDA

Do —OPG-ADMM

14 0 —#-RDA-ADMM
e -E-OL-ADMM

E -&-Batch-ADMM

= 0 SDCA-ADMM

35 -

10

w

Classification Error

H H H SE-Ha g 005
P e L s 4
TR GRG0 ;

100 500 g = °

20 %0 400 0 0 o W o
CPU time (s) CPU time () CPU time (s)

(a) Excess objective value (b) Test loss (c) Class. Error

Figure: Artificial data (n=51,200, d=1024). Overlapped group lasso. Mini-batch
size n/K = 50.
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Numerical Experiments (Real data): Setting

Real data: Graph regularization:
p p
bw) =G wil+G Y Iwi—wi|+0.01x (G Y [wilP+C D wi—wl?)
i=1 (iJ)eE i=1 (ij)eE
where E is the set of edges obtained from the similarity matrix.
The similarity graph is obtained by Graphical Lasso (Yuan and Lin, 2007,
Banerjee et al., 2008).
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Numerical Experiments (Real data): Results

*UrT o ——OPG-ADMM
ﬁ 0.188 \\ 0.138 —#-RDA-ADMM
o 0.186 | = 0,136 -8-OL-ADMM
E \ e . —+SDCA-ADMM
0.184 w
= Bow \ 5o
a S S
u ol \ Som
01 A g o
- NR m Do 1)&44&1*;
0.172 e T o122 E % %
o
5 10 15 20 2 30 35 40 45 011 m o 0° 0
CPU time (s) CPU time (s) CPU time (s)
(a) Objective function (b) Test loss (c) Class. Error

Figure: Real data (20 Newsgroups, n=12,995). Graph regularization. Mini-batch
size is n/K = 50.
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Numerical Experiments (Real data): Results
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Figure: Real data (a9a, n=32,561). Graph regularization. Mini-batch size
n/K = 50.

48 /62



Outline

© Parallel and distributed optimization
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Distributed computing

Q: How to deal with huge data that cannot be treated in one
computational node?
A: Distributed computing.

Challenge communication cost trade-off:
communication inside node v.s. between nodes via network.

We briefly introduce two approaches
e Simple averaging of SGD: (Zinkevich et al., 2010, Zhang et al., 2013)
o Distributed dual coordinate descent (COCOA+): (Ma et al., 2015)
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Simple averaging

@ Run independent SGDs by K nodes.
@ Take the average of K final solutions:

1 K
5\(K = K;X[k].

Just one synchronization, efficient communication cost. How about

convergence?
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Assumption:

@ The loss function is sufficiently smooth (there exists second order
derivative, and it is Lipschitz continuous and bounded).

@ The expected loss is A-strongly convex.

@ Each node runs T iterations of SGD.

Theorem ((Zhang et al., 2013))

With an appropriate step size,

[lIxk — x*||7] < m"‘m .

@ As K is increased, the main term is linearly improved.

o However, too large K is not effective. Actually, for A € (0,1/V/T), it
is shown that (Shamir et al., 2014)

C
~ * (12
E[”XK—X H ]ZW
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COCOA+ (Ma et al., 2015)

We divide the sample into K groups { Gk }«:

K
{1,....,n=J Gk, Gen G =0.
k=1

Dual problem of RERM:

; n
i=1
1o K
* *
:EZ (Zﬁ(%’)) +¢ <—ZAckyck>
k=1 i€ Gy k=1
Divided into K groups needs synchronization

where Ag, = [aj,, .. .,a,-Gk] e RP*IGkl where ij € Gk and yg, = (¥i)iea,-
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Run small coord. desc.
in parallel

Sum up the results
(synchronization)

Run smaIII coord. desc.

in paralle
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@ f; is yr-smooth.
@ ¢ is A-strongly convex.
@ Each subproblem decreases the objective by a factor of ©.

Let the separability of the problems as

Ay||? A 2
Omin ‘= Max [4v] Omax .= Max max M

yeRn 5K 1 AGye, 2 Ky erial lye,|?

Theorem
Under an appropriate setting of parameters, after T iterations with

T > ComatupdtfOnH jog(1 /e),

it holds that E[D(y(T)) — D(y*)] < €. Furthermore, after T iterations with

OminTmax A1 O minTmax A1
T > CZnintpa A |og( Trinonayi ML /),

it hods that E[P(w(t)) — D(y())] < .
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It is shown that omin < K and omax < n/K. Then

ve/A+1
T>CF—log(1
) g(1/e)
achieves € accuracy. This is equivalent to iteration number of batch
gradient methods on a strongly convex function.

t
Typically © = (1 — m) where t is the number of inner iterations.

Total computational time (worst case):

t(1+ ¢/ ) log(1/e) = (% + %) (1 + %) log(1/¢).

Huge learning problems can be optimized on a distributed system with
linear convergence rate.
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Outline

© Further interesting topics
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Stochastic primal dual coordinate method
(Zhang and Lin, 2015)

x and y; (/i is chosen randomly) are updated alternatively.
Iteration complexity:

T> (n+ v/k) log(1/e)
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Stochastic primal dual coordinate method
(Zhang and Lin, 2015)

vl gy o)

I
N

sup, {{x,aiyi)— £ (vi)}

— minmax{ - S (e, aii) — £() 0

X
Y i=1

x and y; (i is chosen randomly) are updated alternatively.
Iteration complexity:

T> (n~|— 7/)\> log(1/€)
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Multi-armed bandit

Maximize the sum of rewards earned through a sequence of plays.

e Formulated by Robbins (1952).

e Optimal strategy: Lai and Robbins (1985)

o UCB strategy: Auer et al. (2002), Burnetas and Katehakis (1996)

@ Thompson sampling (Bayesian strategy): Thompson (1933)
Continuous version of bandit: Bayesian optimization (Motkus, 1975,
Mockus and Mockus, 1991, Srinivas et al., 2012, Snoek et al., 2012)

@ Gaussian process regression to search the peak of a function.
@ Practically useful for hyper-parameter tuning of deep learning.
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Stochastic gradient Langevin Monte Carlo
(Welling and Teh, 2011)

Goal: Efficient sampling from the posterior distribution.

Randomly choose small mini-batch /; C {1,...,n} and update the
parameter 6;:

Br =01 + 1 |Vologm(8)+1 = > Vglog(p(xil6)) | + ec
’l | i€l
prior t likelihood

where & ~ N(0,7,I) and

Stiee =00, 22 € < oo
Related topic: Stochastic variational inference (Hoffman et al., 2013).

@ Bayesian inference for large datasets.
@ Practically very useful.
@ Supported by some theoretical backgrounds.
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Connection to learning theory

mln{ Zea, +)\|x||1}

@ Solve regularized learning problem in online setting (data z; comes
one after another).

@ The regularization parameter A; should go to zero as t — oc.
Question: Can we achieve statistically optimal estimation?
— Yes.

o RADAR (L;-regularization): Agarwal et al. (2012)

e REASON (Stochastic ADMM): Sedghi et al. (2014)

*(12 S|Og(p)
<
X< —=

[[x: —

for s-sparse truth x*.
Simultaneous discussions of optimization and statistics.

61 /62



Summary of part Il

@ Stochastic ADMM for structured sparsity
e Online proximal gradient method, regularized dual averaging method
for ADMM (online)
e Stochastic dual coordinate descent for ADMM (batch)
o A similar convergence result to the normal ones
@ Distributed stochastic optimization

e Simple averaging
o Distributed SDCA (COCOA+)
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